
Computer Architecture I

Reduced Instruction Set Processor
CSSE232

Team W
Michael Donaghy, Braedyn Edwards,
Emily Hart, Liam Hill, Logan Manthey

July 15, 2023

Rose-Hulman Institute of Technology
Department of Computer Science and Software Engineering

Abstract

This document outlines the processor designed in CSSE232: Computer Architecture by Michael,
Braedyn, Emily, Liam, and Logan. This processor uses a reduced instruction set based on

accumulators.

Table of Contents

1. Introduction 1
1.1. High Level Summary . 1

1.1.1. Instruction Set Architecture . 1
1.1.2. Implementation . 1
1.1.3. Testing . 2
1.1.4. Final Results . 2

2. Assembly Language Specifications 3
2.1. High Level Description . 3
2.2. Registers Available . 3
2.3. Instructions . 4
2.4. Syntax and Semantics . 4
2.5. Calling Conventions . 9
2.6. Translating Assembly Language into Machine Language 10
2.7. Assembly Translations . 12

2.7.1. RelPrime . 12
2.7.2. SumArray . 15
2.7.3. SumArray (Recursive) . 16
2.7.4. If . 18
2.7.5. While Loop . 19

2.8. Machine Language Translations . 20
2.8.1. RelPrime . 20
2.8.2. SumArray . 21
2.8.3. SumArray (Recursive) . 22
2.8.4. If . 22
2.8.5. While Loop . 23

3. Register Transfer Language 24
3.1. Multi-Cycle RTL . 24
3.2. RTL Verification . 28
3.3. RTL Tests . 29

3.3.1. Add/Sub/And/Or/Xor Tests . 29
3.3.2. Memory Reference Tests . 30
3.3.3. BlastOn Tests . 31
3.3.4. BlastOff Tests . 31
3.3.5. Branch Type Tests . 32
3.3.6. Jump Type Tests . 32
3.3.7. Addi/Andi/Ori/Xori Tests . 33
3.3.8. Slt Test . 34

iii

3.3.9. Slti Test . 35
3.3.10. Lui Test . 36
3.3.11. Swap Test . 37
3.3.12. AddSP Test . 37

3.4. Components . 38

4. Component Specifications 39
4.1. Comparator . 39

4.1.1. Hardware Implementation Plan . 40
4.1.2. Unit Tests . 40

4.2. ALU . 41
4.2.1. Hardware Implementation Plan . 42
4.2.2. Unit Tests . 42

4.3. Registers . 43
4.3.1. Hardware Implementation Plan . 43
4.3.2. Unit Tests . 43

4.4. Register File . 44
4.4.1. Hardware Implementation Plan . 44
4.4.2. Unit Tests . 45

4.5. Memory . 46
4.5.1. IO . 46
4.5.2. Hardware Implementation Plan . 47
4.5.3. Unit Tests . 47

4.6. Immediate Generator . 48
4.6.1. Hardware Implementation Plan . 48
4.6.2. Unit Tests . 48

4.7. ALU Control . 49
4.7.1. Hardware Implementation Plan . 49
4.7.2. Unit Tests . 49

5. Multi-Cycle Data Path 50

6. Control Specifications 51
6.1. Control Signals . 51
6.2. Control Unit Specification . 52
6.3. Control Unit Testing . 53
6.4. ALU Control Unit Specification . 53
6.5. ALU Control Unit Testing . 53

7. Testing 54
7.1. Unit Testing . 54
7.2. Integration Testing . 54
7.3. Subsystem Testing . 54
7.4. System Testing . 55

iv

8. Subsystems Specifications 56
8.1. PC Subsystem . 57
8.2. Memory Subsystem . 58
8.3. Register File Subsystem . 59
8.4. Branch Subsystem . 60
8.5. ALU Subsystem . 61

9. Performance 62

10. Machine Code Assembler 64
10.1. Instructions for Basic Usage . 64
10.2. Assembly Language Tokens and Usage . 64

10.2.1. Enable/Disable memory locations and comments 64
10.2.2. Set Memory Address % . 64
10.2.3. Add a Label $. 65

10.3. Instruction Syntax . 65
10.3.1. Labels and Limits . 66
10.3.2. Pseudo Instructions . 67
10.3.3. User Error Catching . 68

11. Conclusion 70

Appendix 72

A. Appendix 72
A.1. Single-Cycle RTL . 72
A.2. Control Bits . 76
A.3. Control State Diagram . 79
A.4. Reference Data Sheet . 83

v

1. Introduction

S.W.H.A.P.
Sid We Have A Problem

1.1. High Level Summary
The SWHAPmulti-cycle processor was developed by Braedyn Edwards, Liam Hill, Micheal Donaghy,
Emily Hart, and Logan Manthey in CSSE232, Fall 2022. This processor will output the relative prime
number to the input.

We developed our own Assembly Language, which has 16 registers available for use, 27 in-
structions, 8 instruction types, detailed Syntax and Semantics, and descriptive calling conventions.
Additional Assembly Language details can be viewed in Section 2. We also developed an assembler,
which was used to convert our assembly language to machine code quickly. Our RTL is comprised
of 4 cycles, with testing and verification included, outlined in Section 3. Section 4 contains our list
of components, with specifications, a description, diagram hardware implementation plan, and unit
testing plan for each used in the SWHAP Processor.

Our 17 control bits allow us to control when values are read and written, to choose what data to
use and where to store it, and to support conditional logic. We also include details on our testing
process in Section 7, with Unit Testing, Integration Testing, Subsystem Testing, and System Testing
ran on our processor.

Section 8 describes our Subsystems: PC, Memory, Register File, Branch and ALU. Finally our last
sections describe the performance of the processor, and our special features: the Memory Mapped
IO and our Assembler.

1.1.1. Instruction Set Architecture
This processor uses a multi-accumulator ISA with memory-mapped IO. This allows the programmer
to switch easily between which accumulator is currently in use, through use of the swap command.
This allows us to offer 27 instructions, with 8 instruction types.

1.1.2. Implementation
Our Assembly Language is detailed in section 2, and our Multi-cycle RTL is detailed in Section 3.
We used Verilog in Quartus to create our components, subsystem, and final processor system.

1

1. Introduction

1.1.3. Testing
Each instruction and component was unit tested, and subsystems underwent integration and
subsystem testings. The final system went through our System Tests, and we aimed to follow
Boundary Value Analysis to ensure we were testing for the right things. Section 4 details our testing
plan and processes.

1.1.4. Final Results
Our final results can be seen in Section 9: Performance. Our processor can take in an input, and
outputs the closest relatively prime number. Our Average CPI was 3.34, and our total time taken to
run relPrime with the input 13b’0 was 20ms.

2

2. Assembly Language Specifications

2.1. High Level Description
This Reduced Instruction Set Processor uses an accumulator processor design with up to 4 accumu-
lators. It has a dedicated current accumulator register to specify which accumulator to use along
with a swap instruction which allows one to swap the current accumulator to one specified in the
instruction.

2.2. Registers Available
Registers zero, sp, ra, a0-a3, and p0-p7 are available for the assembly language programmer to use.
Register ca is reserved for the current accumulator to be stored. Registers sp and ra can’t be edited
directly, but their values can be changed through the use of instructions available. See table 2.1.

REGISTER NAME USE SAVER
x0 zero Zero N.A
x1 sp Stack Pointer Callee
x2 ra Return Address Caller

x3-x6 a0-a3 Accumulators Caller
x7-x8 p0-p1 Function Args/ Return Type Caller
x9-x14 p2-p7 Func Args Caller
x15 ca Current Accum. —

Table 2.1.: Register Name, Use, Calling Convention

• Stack Pointer (sp): The stack pointer is a callee saved register allowing one to increment
the amount of data we want to store in our procedure

• x1 - x14: These are caller saved because we want to save these values on the stack before we
call another procedure

• Zero and ca: Zero is hardwired to ground (creating a zero) and Current Accumulator is only
accessed by the swap instruction with user input

3

2. Assembly Language Specifications

2.3. Instructions
There are 8 machine language instructions: A, I, M, J, B, L, LI, C. See table 2.2 for the instruction
formatting.

Table 2.2.: Instruction Format
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Arithmetic A — rs1 f2 Opcode
Immediate I Immediate f2 Opcode
Memory M Immediate rs1 f2 Opcode

Jump J Immediate f2 Opcode
Branch B Immediate rs1 f2 Opcode
Logical L — rs1 f2 Opcode

Logical Immediate LI — Immediate f2 Opcode
Control C – rs1 f2 Opcode

2.4. Syntax and Semantics
There are 27 base instructions, and 8 format types. See table 2.6 for more details and Verilog
description names, and mnemonics.

4

5

2. Assembly Language Specifications

Table 2.3.: A, I, M Type Syntax and Semantics

Instruction Description Syntax Where Usage
A Type

ADD Adds the content of a source register rs1 and the current
accumulator and stores the value on the current accumulator.

add rs1 rs1 is the register to add add x0

SUB Subtracts rs1 from the current accumulator register value and
stores the result in the current accumulator.

sub rs1 rs1 is the register to sub sub x0

BLASTOFF Takes the value from the current accumulator and stores it in
rs1

blastoff rs1 rs1 is the register to store the
blasted off value

blastoff p0

BLASTON Takes the value from rs1 and stores it to the current accumu-
lator overriding any current value

blaston rs1 rs1 is that’s value is taken and
blasted onto the current accu-
mulator

blaston p0

I Type
ADDI Adds the value of the Immediate to the current accumulator

value and stores the value to the current accumulator
addi imm imm is the immediate to add to

the current accumulator
addi 0x7

SLLI Bitwise shifts the value of the current accumulator register
by the immediate value and stores the value in the current
accumulator

slli imm imm is the immediate amount
to shift the current accumulator
left by

slli 0x1

LUI Sets the current accumulator register value to the top half of
the imme-diate (bits [15:8])

lui imm imm is the immediate to which
bits [15:8] are loaded into the
current accumulator

lui 0xFF4D

ADDSP Increments the stack pointer by the immediate value and
stores the value into the stack pointer

addsp imm imm is the value to increase the
stack pointer by

addsp 2

M Type
LW Loads the value of rs1 plus the immediate from memory and

stores it into the current accumulator register
lw imm(rs1) rs1 is the register used as the

base memory address
imm is the value added to rs1 as
an offset

lw 4(x7)

SW Stores the value of the current accumulator register into rs1
plus the immediate in memory

sw imm(rs1) rs1 is the register used as the
base memory address
imm is the value added to rs1 as
an offset

sw 4(x7)

6

2. Assembly Language Specifications

Table 2.4.: J, B Type Syntax and Semantics
Instruction Description Syntax Where Usage

J Type

J Jumps to the location in memory at the PC + the immediate
denoted by the offset and the label

j imm(label) label is the label which to jump
to
imm is the value added to the
label as an offset

j 0 EXIT

JL Jumps to the location in memory at the PC + the immediate
denoted by the offset and the label and links the original value
of the PC to the return address by storing it in the ra register

jl imm(label) label is the label which to jump
imm is the value added to the
label as an offset

jl 0 EXIT

Jar Jumps to the address stored in the ra register offset by the
immediate

jar imm imm is the value added to the
label as an offset

jar 0

Jarl Jumps to address stored in the ra register, offset by the imme-
diate, and stores the jumped from location in ra

jarl imm imm is the value added to the
label as an offset

jarl 0

B Type

BEQ If the current accumulator register and rs1 are equal, add the
immediate to the PC

beq rs1, label rs1 is the register to compare the
current accumulator to
label is the label which to
branch to

beq x7 EXIT

BGE If the current accumulator register is greater than or equal to
rs1, add the immediate (label) to the PC

bge rs1, label rs1 is the register to compare the
current accumulator to
label is the label which to
branch to

bge x7 EXIT

BLT If the current accumulator register is less than rs1, add the
immediate (label) to the PC

blt rs1, label rs1 is the register to compare the
current accumulator to
label is the label which to
branch to

blt x7 EXIT

7

2. Assembly Language Specifications

Table 2.5.: L, LI, C Type Syntax and Semantics
Instruction Description Syntax Where Usage

L Type

OR Bitwise ors the current accumulator register with rs1 and
stores the resulting value to the current accumulator

or rs1 rs1 is the register to or the cur-
rent accumulator to

or x7

AND Bitwise ands the current accumulator register with rs1 and
stores the resulting value to the current accumulator

and rs1 rs1 is the register to and the cur-
rent accumulator to

and x7

XOR Bitwise xors the current accumulator register with rs1 and
stores the resulting value to the current accumulator

xor rs1 rs1 is the register to xor the cur-
rent accumulator to

xor x7

SLT If the current accumulator register is less than the value of
rs1, set the current accumulator to 1, otherwise set it to 0

slt rs1 rs1 is the register to compare the
current accumulator to

slt x7

LI Type

ORI Bitwise ors the current accumulator register with the imme-
diate and stores the value in the current accumulator

ori imm imm is the immediate to or the
current accumulator to

ori 4

ANDI Bitwise ands the current accumulator register with the imme-
diate and stores the value in the current accumulator

andi imm imm is the immediate to and the
current accumulator to

andi 4

XORI Bitwise xors the current accumulator register with the imme-
diate and stores the value in the current accumulator

xori imm imm is the immediate to xor the
current accumulator to

xori 4

SLTI If the immediate is less than the value of the current accumu-
lator register, set the current accumulator to 1, otherwise set
it to 0

slti imm imm is the immediate to com-
pare the current accumulator to

slti 4

C Type

SWAP Changes the current accumlator pointer to the address of rs1 swap rs1 rs1 is the accumulator to swap
to

swap a2

NOP No Operation used as a delay and default instruction loaded nop nop

2. Assembly Language Specifications

Table 2.6.: Base Instructions
MNEMONIC FMT NAME VERILOG DESCRIPTION
add A Add R[ca] = R[rs1] + R[ca]
addi I Add

Immediate
R[ca] = imm + R[ca]

addsp I Add Stack
Pointer

sp = R[sp] + imm

and L AND R[ca] = R[rs1] & R[ca]
andi LI AND

Immediate
R[ca] = imm & R[ca]

beq B Branch
Equal

if(R[ca] == R[rs1])
PC=PC+imm

bge B Branch Greater
Than Equal

if(R[ca] R[rs1])
PC=PC+imm

blt B Branch
Less Than

if(R[ca] < R[rs1])
PC=PC+imm

jar J Jump and Re-
turn

PC = Reg[ra] + imm

j J Jump PC = PC + imm + label
jarl J Jump and Re-

turn Immediate
PC = Reg[ra] + imm
Reg[ra] = oldPc

jl J Jump Immediate Reg[ra] = PC
PC = PC + imm + label

lui I Load Upper
Immediate

ca = imm[15:08]

lw M Load Word ca = MEM[rs1] + imm(6:0)
nop C No Operation N/A
or L Or ca = ca | R[s1]
ori LI OR with

Immediate
ca = ca | imm

blastOff A Blast Off R[rs1] = ca
blastOn A Blast On ca = R[rs1]
slli I Shift Left

Immediate
ca = ca « imm

slt L Set Less
Than

ca = (R[ca] < R[rs1]) ? 1 : 0

slti LI Set Less Than
Immediate

if(imm< R[rs1])
ca = 1

sub A Subtract ca = ca - R[rs1]
sw M Store Word MEM[rs1] + imm(6:0) = ca
swap C Swap Current

Accumulator
ca = *R[rs1]

xor L XOR ca = R[rs1] ĉa
xori LI XOR

Immediate
ca = R[rs1] îmm

8

2. Assembly Language Specifications

2.5. Calling Conventions
For this instruction set, the following calling conventions must be observed:

• The current accumulator is caller saved
• The return address is caller saved
• The stack pointer is callee saved/returned to where it was found
• All function arguments/return values are caller saved

– When calling a function, registers x7-x14 (p0-p7) are reserved for function arguments
– When returning from a function call, registers x7-x8 (p0-p1) are reserved for return
values

To be caller saved, it means that the calling function must save the register value on stack before
calling the other function if it expects to have access to that same value again.

To be callee saved, it means that the called function (i.e. every function) must save those registers’
values on the stack before using them because the calling function expects them to be unchanged.
Below is a small assembly program to demonstrate calling conventions.

1 int
2 proc(int num){
3 num = num + 2;
4 proc2(num);
5 return num;
6 }

1 proc:
2 swap a0 # currAccum = a0
3 blastOn p0 # a0 = a1
4 addi 2 # a0 = a0 + 2
5 addSp -4 # move sp down 4
6 sw 0(sp) # store num on stack
7 blastOn ra # a0 = ra
8 sw 2(sp) # store ra on stack
9 jl 0(proc2) # jump and return from proc2
10 nop
11

12 lw 0(sp) # restore num from stack
13 blastOff p0 # set return value to num
14 lw 2(sp) # restore ra from stack
15 blastOff ra # set return address to original value
16

17 addSp 4 # move sp back up 4
18 jar 0 # return to original caller
19 nop
20

9

2. Assembly Language Specifications

2.6. Translating Assembly Language into Machine Language
• Opcode: For all types, the opcode of the instruction is stored in inst[2:0]. Instructions of the
same format share the same opcode since they can be differentiated by their funct2s.

• Funct2: For all types, the funct2 of the instruction is stored in inst[4:3]. The funct2, in
combination with the opcode, allows us to distinguish between which operation is being used
since the opcode doesn’t give us that level of specificity.

• RS1: For the A, M, B, L, and C types, rs1 represents the register used in the instruction and is
stored at inst[8:5].

• Immediate: For the I and J types, the immediate is stored at inst[15:5]. For the M and B types,
the immediate is stored at inst[15:9]. For the LI type, the immediate is stored at inst[12:5].

• Unused Bits: For the A, L, and C types, inst[15:9] represent unused bits. For the LI type,
inst[15:13] represent unused bits.

10

2. Assembly Language Specifications

Table 2.7.: Opcodes
MNEMONIC FMT OPCODE FUNCT2
add A 001 00
sub A 001 01
blastOff A 001 10
blastOn A 001 11

addi I 010 00
slli I 010 01
lui I 010 10
addsp I 010 11

lw M 011 00
sw M 011 01

jar J 100 00
j J 100 01
jl J 100 10
jarl J 100 11

beq B 101 00
bge B 101 01
blt B 101 10

or L 110 00
and L 110 01
xor L 110 10
slt L 110 11

ori LI 111 00
andi LI 111 01
oxri LI 111 10
slti LI 111 11

swap C 000 00
nop C 000 01

11

2. Assembly Language Specifications

2.7. Assembly Translations
Example assembly language program translations and fragments demonstrating that our instruction
set can find relative primes and perform other common operations.

2.7.1. RelPrime
Assembly program to find relative primes (relprime).

1 int
2 relPrime(int n)
3 {
4 int m;
5 m = 2;
6

7 while (gcd(n, m) != 1) { // n is the input from the outside
world↪

8 m = m + 1;
9 }
10 return m;
11 }
12

13 int
14 gcd(int a, int b)
15 {
16 if (a == 0) {
17 return b;
18 }
19

20 while (b != 0) {
21 if (a > b) {
22 a = a - b;
23 } else {
24 b = b - a;
25 }
26 }
27 return a;
28 }

12

2. Assembly Language Specifications

1 relPrime:
2 swap a0 # currAccum = a0
3 blastOn p0 # a0 = n
4

5 addsp -4 # move sp down 4
6 sw 0(sp) # store n on stack
7 blastOn zero # clear a0
8 addi 2 # a0 = 2
9 blastOff p1 # p1 = a0
10 sw 2(sp) # store p1 on stack
11

12 WHILE:
13 jl 0 GCD # call GCD
14 nop # Jump delay slot
15

16 swap a1 # currAccum = a1
17 blastOn p0 # a1 = p0
18 swap a2 # currAccum = a2
19 blastOn zero # clear a2
20 addi 1 # a2 = 1
21

22 beq a1 DONE # if (a1 == a2) goto DONE
23 nop # Branch delay slot
24

25 swap a0 # currAccum = a0
26 lw 2(sp) # currAccum = stored M on stack
27 addi 1 # currAccum = currAccum + 1
28 blastOff p1 # p1 = currAccum
29 sw 2(sp) # store currAccum (M) on stack
30 lw 0(sp) # load n off of stack into currAccum
31 blastOff p0 # p0 = currAccum
32 j 0 WHILE # continue loop
33 nop # Jump delay slot
34

35 DONE:
36 swap a0 # currAccum = a0
37 lw 2(sp) # currAccum = stored M on stack
38 blastOff p0 # p0 = currAccum
39 addsp 4 # reset sp
40

41 sw 8(zero) # put result in IO Output
42 jar 0 # jump back to caller
43 nop # Jump delay slot
44

45 GCD:
46 swap a2 # Swap currAccum to a2
47 blastOn p1 # blastOn p1 onto a2

13

2. Assembly Language Specifications

48 swap a1 # Swap currAccum to a1
49 blastOn p0 # blastOn p0 onto a1
50

51 beq zero DONEB # if (a == 0) goto DONEB
52 nop # Branch delay slot
53

54 LOOP:
55 swap a2 # Swap currAccum to a2
56 beq zero DONEA # if(a2 == 0) goto DONEA (b == 0)
57 nop # Branch delay slot
58

59 bge a1 SUBA # if(a2 >= a1) goto SUBA (if statement)
60 nop # Branch delay slot
61

62 swap a1 # Swap currAccum to a1
63 sub a2 # a1 = a1 - a2 (a = a - b)
64 j 0 LOOP # continue loop
65 nop # Jump delay slot
66

67 SUBA:
68 sub a1 # a1 = a1 - a2 (a = a - b)
69 j 0 LOOP # Jump to LOOP
70 nop # Jump delay slot
71

72 DONEA:
73 swap a1 # Swap currAccum to a1
74 j 0 END # Jump to END
75 nop # Jump delay slot
76

77 DONEB:
78 swap a2 # Swap currAccum to a2
79 j 0 END # Jump to END
80 nop # Jump delay slot
81

82 END:
83 blastOff p0 # p0 = currAccum
84 jar 0 # return to caller
85 nop # Jump delay slot
86

14

2. Assembly Language Specifications

2.7.2. SumArray
Assembly program to demonstrate array iteration, loops, and summation.

1 int
2 sumArr(int len, int* arr)
3 {
4 int total = 0;
5 for (int i = 0; i < len; i++) {
6 total = total + arr[i];
7 }
8 return total;
9 }

1 SumArr:
2 swap a0 # currAccum = a0
3 blastOn p0 # a0 = p0
4

5 swap a1 # currAccum = a1
6 blastOn zero # a1 = 0
7 swap a0 # currAccum = a0
8

9 LOOP:
10 beq zero EXIT # if (a0 == 0) goto EXIT
11 nop
12

13 swap a0 # currAccum = a0
14 blastOn p0 # a0 = p0
15 addi -1 # a0 = a0 - 1
16 blastOff p0 # p0 = a0
17 slli 1 # a0 = a0 * 2
18 add p1 # a0 = a0 + p1
19

20 lw 0(a0) # load currAccum with value at a0[0]
21 swap a1 # currAccum = a1
22 add a0 # a1 = a1 + a0;
23 jl 0 LOOP # continue loop
24 nop
25

26 EXIT:
27 blastOn p0 # a1 = p0
28 jar 0 # return to caller
29 nop

15

2. Assembly Language Specifications

2.7.3. SumArray (Recursive)
Assembly program to demonstrate recursion and conditionals using a recursive implementation of
the previous program.

1 int
2 sumArrRec(int len, int* arr)
3 {
4 if (len == 0) { return 0; }
5

6 return arr[0] + sumArrRec(len - 1, (arr + 1));
7

8 }

1 SumArrRec:
2 swap a0 # currAccum = a0
3 blastOn zero # a0 = 0
4 swap a1 # currAccum = a1
5 blastOn p0 # a1 = p0
6

7 beq zero EXIT # if (a1 == 0) goto EXIT
8 nop
9 addi -1 # a1 = a1 - 1
10 blastOff p0 # p0 = a1
11 addsp -4 # sp = sp - 4
12 blastOn p1 # a1 = p1
13 sw 0(sp) # store p1 on stack
14

15 addi 2 # a1 = a1 + 2
16 blastOff p1 # p1 = a1
17 swap a0 # currAccum = a0
18 blastOn ra # a0 = ra
19 sw 2(sp) # store ra on stack
20 jl 0, SumArrRec # recursively call SumArrRec
21 nop
22

23 blastOn p0 # a0 = p0
24 swap a1 # currAccum = a1
25 lw 0(sp) # address of arr is restored from stack
26 lw 0(a1) # a1 = arr from stack at address
27

28 swap a0 # currAccum = a0
29 add a1 # a0 = a0 + a1
30 swap a1 # currAccum = a1
31 lw 2(sp) # address of ra is restored from the stack
32 blastOff ra # ra = ra from stack

16

2. Assembly Language Specifications

33

34 EXIT:
35 swap a0 # currAccum = a0
36 blastOff p0 # p0 = a0
37 jar 0 # return to caller
38 nop
39

17

2. Assembly Language Specifications

2.7.4. If
Assembly program to demonstrate an if statment

1 int
2 addIf1(int num)
3 {
4 if (num=1) { num+=1 }
5

6 return num;
7

8 }

1 AddIf1:
2 swap a0 # currAccum = a0
3 blastOn zero # a0 = 0
4 swap a1 # currAccum = a1
5 blastOn p0 # a1 = p0
6 addi -1 # a1 -= 1
7 beq zero ADD # if (a1 == 0) goto EXIT
8 nop
9

10 EXIT:
11 swap a0 # currAccum = a0
12 blastOff p0 # p0 = a0
13 jar 0 # return to caller
14 nop
15 ADD:
16 addi 2
17 blastOff p0 # p0 = a1
18 blastOn zero
19 beq zero EXIT
20 nop
21

18

2. Assembly Language Specifications

2.7.5. While Loop
Assembly program to demonstrate a while loop

1 int
2 WhileExample()
3 {
4 int num = 0;
5 while(num < 10) {
6 num++;
7 }
8

9 return num;
10 }

1 WhileExample:
2 swap a0 # currAccum = a0
3 blastOn zero # a0 = 0
4 swap a1 # currAccum = a1
5 blastOn zero # a1 = p0
6 addi 10 # a1 = 10
7 swap a0
8

9 WHILE:
10 bge a1 DONE # if a0 > a1 (num > 10) goto DONE
11 nop
12 addi 1 # a0 += 1
13 j 0 WHILE # loop again
14 nop
15

16 DONE:
17 blastOff p0 # p0 = a1
18 jar 0 # return to caller
19 nop

19

2. Assembly Language Specifications

2.8. Machine Language Translations
Machine language translations of our assembly programs (relprime and your fragments).

2.8.1. RelPrime
Machine language translation of relprime.

1 0x0000 0000000001100000 //swap a0 # currAccum = a0 from line2
2 0x0002 0000000011111001 //blastOn p0 # a0 = n from line3
3 0x0004 1111111110011010 //addsp -4 # move sp down 4 from line4
4 0x0006 0000000000101011 //sw 0(sp) # store n on stack from line5
5 0x0008 0000000000011001 //blastOn zero # clear a0 from line6
6 0x000a 0000000001000010 //addi 2 # a0 = 2 from line7
7 0x000c 0000000100010001 //blastOff p1 # p1 = a0 from line8
8 0x000e 0000010000101011 //sw 2(sp) # store p1 on stack from line9
9 0x0010 0000011101010100 //jl 0 GCD
10 0x0012 0000000000001000 //nop
11 0x0014 0000000000001000 //nop # Jump delay slot from line11
12 0x0016 0000000010000000 //swap a1 # currAccum = a1 from line12
13 0x0018 0000000011111001 //blastOn p0 # a1 = p0 from line13
14 0x001a 0000000010100000 //swap a2 # currAccum = a2 from line14
15 0x001c 0000000000011001 //blastOn zero # clear a2 from line15
16 0x001e 0000000000100010 //addi 1 # a2 = 1 from line16
17 0x0020 0011010010000101 //beq a1 DONE
18 0x0022 0000000000001000 //nop
19 0x0024 0000000000001000 //nop # Branch delay slot from line17
20 0x0026 0000000001100000 //swap a0 # currAccum = a0 from line18
21 0x0028 0000010000100011 //lw 2(sp) # currAccum = stored M on stack from line19
22 0x002a 0000000000100010 //addi 1 # currAccum = currAccum + 1 from line20
23 0x002c 0000000100010001 //blastOff p1 # p1 = currAccum from line21
24 0x002e 0000010000101011 //sw 2(sp) # store currAccum (M) on stack from line22
25 0x0030 0000000000100011 //lw 0(sp) # load n off of stack into currAccum from line23
26 0x0032 0000000011110001 //blastOff p0 # p0 = currAccum from line24
27 0x0034 1111101110001100 //j 0 WHILE
28 0x0036 0000000000001000 //nop
29 0x0038 0000000000001000 //nop # Jump delay slot from line25
30 0x003a 0000000001100000 //swap a0 # currAccum = a0 from line27
31 0x003c 0000010000100011 //lw 2(sp) # currAccum = stored M on stack from line28
32 0x003e 0000000011110001 //blastOff p0 # p0 = currAccum from line29
33 0x0040 0000000010011010 //addsp 4 # reset sp from line30
34 0x0042 0001000000001011 //sw 8(zero) # put result in IO Output from line31
35 0x0044 0000000000000100 //jar 0
36 0x0046 0000000000001000 //nop
37 0x0048 0000000000001000 //nop # Jump delay slot from line32
38 0x004a 0000000010100000 //swap a2 # Swap currAccum to a2 from line34
39 0x004c 0000000100011001 //blastOn p1 # blastOn p1 onto a2 from line35
40 0x004e 0000000010000000 //swap a1 # Swap currAccum to a1 from line36
41 0x0050 0000000011111001 //blastOn p0 # blastOn p0 onto a1 from line37
42 0x0052 0101110000000101 //beq zero DONEB
43 0x0054 0000000000001000 //nop
44 0x0056 0000000000001000 //nop # Branch delay slot from line38

20

2. Assembly Language Specifications

45 0x0058 0000000010100000 //swap a2 # Swap currAccum to a2 from line40
46 0x005a 0011110000000101 //beq zero DONEA
47 0x005c 0000000000001000 //nop
48 0x005e 0000000000001000 //nop # Branch delay slot from line41
49 0x0060 0010000010000101 //beq a1 SUBA
50 0x0062 0000000000001000 //nop
51 0x0064 0000000000001000 //nop # Branch delay slot from line42
52 0x0066 0000000010000000 //swap a1 # Swap currAccum to a1 from line43
53 0x0068 0000000010101001 //sub a2 # a1 = a1 - a2 (a = a - b) from line44
54 0x006a 1111110111001100 //j 0 LOOP
55 0x006c 0000000000001000 //nop
56 0x006e 0000000000001000 //nop # Jump delay slot from line45
57 0x0070 0000000010001001 //sub a1 # a1 = a1 - a2 (a = a - b) from line47
58 0x0072 1111110011001100 //j 0 LOOP
59 0x0074 0000000000001000 //nop
60 0x0076 0000000000001000 //nop # Jump delay slot from line48
61 0x0078 0000000010000000 //swap a1 # Swap currAccum to a1 from line50
62 0x007a 0000000111001100 //j 0 END
63 0x007c 0000000000001000 //nop
64 0x007e 0000000000001000 //nop # Jump delay slot from line51
65 0x0080 0000000010100000 //swap a2 # Swap currAccum to a2 from line53
66 0x0082 0000000011001100 //j 0 END
67 0x0084 0000000000001000 //nop
68 0x0086 0000000000001000 //nop # Jump delay slot from line54
69 0x0088 0000000011110001 //blastOff p0 # p0 = currAccum from line56
70 0x008a 0000000000000100 //jar 0
71 0x008c 0000000000001000 //nop
72 0x008e 0000000000001000 //nop # Jump delay slot from line57

2.8.2. SumArray
Machine language translation of sumArray.

1 0x0000 0000000001100000 //swap a0 # currAccum = a0 from line2
2 0x0002 0000000011111001 //blastOn p0 # a0 = p0 from line3
3 0x0004 0000000010000000 //swap a1 # currAccum = a1 from line4
4 0x0006 0000000000011001 //blastOn zero # a1 = 0 from line5
5 0x0008 0000000001100000 //swap a0 # currAccum = a0 from line6
6 0x000a 0011110000000101 //beq zero EXIT
7 0x000c 0000000000001000 //nop
8 0x000e 0000000000001000 //nop from line8
9 0x0010 0000000001100000 //swap a0 # currAccum = a0 from line9
10 0x0012 0000000011111001 //blastOn p0 # a0 = p0 from line10
11 0x0014 1111111111100010 //addi -1 # a0 = a0 - 1 from line11
12 0x0016 0000000011110001 //blastOff p0 # p0 = a0 from line12
13 0x0018 0000000000101010 //slli 1 # a0 = a0 * 2 from line13
14 0x001a 0000000100000001 //add p1 # a0 = a0 + p1 from line14
15 0x001c 0000000001100011 //lw 0(a0) # load currAccum with value at a0[0] from line15
16 0x001e 0000000010000000 //swap a1 # currAccum = a1 from line16
17 0x0020 0000000001100001 //add a0 # a1 = a1 + a0; from line17
18 0x0022 1111110100010100 //jl 0 LOOP
19 0x0024 0000000000001000 //nop

21

2. Assembly Language Specifications

20 0x0026 0000000000001000 //nop from line18
21 0x0028 0000000011111001 //blastOn p0 # a1 = p0 from line20
22 0x002a 0000000000000100 //jar 0
23 0x002c 0000000000001000 //nop
24 0x002e 0000000000001000 //nop from line21
25

2.8.3. SumArray (Recursive)
Machine language translation of sumArrayRec.

1 0x0000 0000000001100000 //swap a0 # currAccum = a0 from line2
2 0x0002 0000000000011001 //blastOn zero # a0 = 0 from line3
3 0x0004 0000000010000000 //swap a1 # currAccum = a1 from line4
4 0x0006 0000000011111001 //blastOn p0 # a1 = p0 from line5
5 0x0008 0110010000000101 //beq zero EXIT
6 0x000a 0000000000001000 //nop
7 0x000c 0000000000001000 //nop from line6
8 0x000e 1111111111100010 //addi -1 # a1 = a1 - 1 from line7
9 0x0010 0000000011110001 //blastOff p0 # p0 = a1 from line8
10 0x0012 1111111110011010 //addsp -4 # sp = sp - 4 from line9
11 0x0014 0000000100011001 //blastOn p1 # a1 = p1 from line10
12 0x0016 0000000000101011 //sw 0(sp) # store p1 on stack from line11
13 0x0018 0000000001000010 //addi 2 # a1 = a1 + 2 from line12
14 0x001a 0000000100010001 //blastOff p1 # p1 = a1 from line13
15 0x001c 0000000001100000 //swap a0 # currAccum = a0 from line14
16 0x001e 0000000001011001 //blastOn ra # a0 = ra from line15
17 0x0020 0000010000101011 //sw 2(sp) # store ra on stack from line16
18 0x0022 1111101111010100 //jl 0, SumArrRec
19 0x0024 0000000000001000 //nop
20 0x0026 0000000000001000 //nop from line17
21 0x0028 0000000011111001 //blastOn p0 # a0 = p0 from line18
22 0x002a 0000000010000000 //swap a1 # currAccum = a1 from line19
23 0x002c 0000000000100011 //lw 0(sp) # address of arr is restored from stack from line20
24 0x002e 0000000010000011 //lw 0(a1) # a1 = arr from stack at address from line21
25 0x0030 0000000001100000 //swap a0 # currAccum = a0 from line22
26 0x0032 0000000010000001 //add a1 # a0 = a0 + a1 from line23
27 0x0034 0000000010000000 //swap a1 # currAccum = a1 from line24
28 0x0036 0000010000100011 //lw 2(sp) # address of ra is restored from the stack from line25
29 0x0038 0000000001010001 //blastOff ra # ra = ra from stack from line26
30 0x003a 0000000001100000 //swap a0 # currAccum = a0 from line28
31 0x003c 0000000011110001 //blastOff p0 # p0 = a0 from line29
32 0x003e 0000000000000100 //jar 0
33 0x0040 0000000000001000 //nop
34 0x0042 0000000000001000 //nop from line30

2.8.4. If
Machine language translation of If.

22

2. Assembly Language Specifications

1 0x0000 0000000001100000 //swap a0 # currAccum = a0 from line2
2 0x0002 0000000000011001 //blastOn zero # a0 = 0 from line3
3 0x0004 0000000010000000 //swap a1 # currAccum = a1 from line4
4 0x0006 0000000011111001 //blastOn p0 # a1 = p0 from line5
5 0x0008 1111111111100010 //addi -1 # a1 -= 1 from line6
6 0x000a 0010000000000101 //beq zero ADD
7 0x000c 0000000000001000 //nop
8 0x000e 0000000000001000 //nop from line7
9 0x0010 0000000001100000 //swap a0 # currAccum = a0 from line9
10 0x0012 0000000011110001 //blastOff p0 # p0 = a0 from line10
11 0x0014 0000000000000100 //jar 0
12 0x0016 0000000000001000 //nop
13 0x0018 0000000000001000 //nop from line11
14 0x001a 0000000001000010 //addi 2 from line13
15 0x001c 0000000011110001 //blastOff p0 # p0 = a1 from line14
16 0x001e 0000000000011001 //blastOn zero from line15
17 0x0020 11110000000000101 //beq zero EXIT
18 0x0022 0000000000001000 //nop
19 0x0024 0000000000001000 //nop from line16

2.8.5. While Loop
Machine language translation of While Loop.

1 0x0000 0000000001100000 //swap a0 # currAccum = a0 from line2
2 0x0002 0000000000011001 //blastOn zero # a0 = 0 from line3
3 0x0004 0000000010000000 //swap a1 # currAccum = a1 from line4
4 0x0006 0000000000011001 //blastOn zero # a1 = p0 from line5
5 0x0008 0000000101000010 //addi 10 # a1 = 10 from line6
6 0x000a 0000000001100000 //swap a0 from line7
7 0x000c 0001110010000101 //beq a1 DONE
8 0x000e 0000000000001000 //nop
9 0x0010 0000000000001000 //nop from line9
10 0x0012 0000000000100010 //addi 1 # a0 += 1 from line10
11 0x0014 1111111100001100 //j 0 WHILE
12 0x0016 0000000000001000 //nop
13 0x0018 0000000000001000 //nop from line11
14 0x001a 0000000011110001 //blastOff p0 # p0 = a1 from line13
15 0x001c 0000000000000100 //jar 0
16 0x001e 0000000000001000 //nop
17 0x0020 0000000000001000 //nop from line14
18

23

3. Register Transfer Language

3.1. Multi-Cycle RTL
The Multi-cycle RTL was created and designed off of the Single-Cycle RTL to make the system
faster and more efficient, and can be seen below.

All instructions go through the same first two cycles: Instruction Fetch and Instruction Decode/Reg-
ister Fetch. In the Instruction Fetch cycle, the instruction is fetched from memory based on where the
PC is currently, and then the PC is incremented by two since our instructions are all 2 Bytes. The
instruction is stored in a register named IR. In the Instruction Decode/Register Fetch cycle, register A
is set to the value of the Current Accumulator, register B is set to the value of the register denoted
by bits 8:5 of the instruction, newPC is set to the current PC + immGen to allow for any quick
jumps/branches, and the current Stack Pointer is stored in a register aptly denoted SP. Even though
each instruction does not use all of these registers, it is wise to set them all up in this cycle rather
than adding more cycles to do them later for specific instructions. All immGen values in this RTL
are sign extended to 16 bits using an immGen generator.

In the Execution and Memory Access/Completion cycles, individual instructions/instruction
groups have unique RTL actions. For instance, all add/sub/and/or/xor operations use the ALU to
perform an operation between A and B and the result is stored in the current accumulator. All
memory reference instructions (sw and lw) add A and the immGen together and stores the value
in the ALUOut Register. If it is a load, the value in memory at ALUOut is stored into the current
accumulator; if it is a store, the value in the current accumulator is store in memory. For the push
operation, the value of register B is store in the current accumulator. For the pop instruction, the
register passed into the instruction is given the value of the current accumulator.

For branch operations, if the conditional is true, the PC obtains the value in ALUOut. For jump
instructions, Jar and Jari store save the current location in the return address register, and then the
PC is set to the value in ALUOut. For all immGen operations, the RTL is the same; however the
B register is replaced with the immGen. For the slt operation, if the current accumulator is less
than the passed in operand, the current accumulator is set to 1; otherwise, it is set to 0. For lui, the
current accumulator is set to the top-most 8 bits of the immGen passed in. For the swap operation,
the current accumulator is pointed to the same register as the operand (B). Finally, for the addsp
operation, the ALUOut register is set to the stack pointer plus the provided immGen, which is then
stored in the stack pointer register.

24

3.
Register

Transfer
Language

Table 3.1.:Multi-Cycle RTL Part 1

StepName Action
for branches

Action
for Jumps

Action for
addi / andi / ori/xori

Action
for slt

Instruction
Fetch

IR <= Memory[PC]
oldPC <= PC
PC <= PC + 2

Instruction
Decode /
Register
Fetch

A <= Reg[CA]
B <= Reg[IR[8:5]]
ALUOut <= oldPC + immGen(IR)
Sp <= Reg[SP]
RA <= Reg[RA]

Execution,
address
comp,
branch/
jump com-
pletion

if((A==B) |
(A>=B) | (A<B))
PC <= ALUOut

J : PC <= ALUOut
JL : Reg[RA] <= PC
PC <= ALUOut
Jar & Jarl: PC <= RA +
immGen(IR)

ALUOut <= A OP im-
mGen(IR)

if(A<B)
Reg[CA] <= 1
else
Reg[CA] <= 0

Memory
Access or
A-Type
comple-
tion

Jarl: PC <= oldPC

Note: immGen represents a combinational logic component that takes in the instruction, locates the immediate, and outputs a sign extended
16 bit immediate if it was not already.

25

3.
Register

Transfer
Language

Table 3.2.:Multi-Cycle RTL Part 2

StepName Action for
Add/Sub/And/Or/Xor

Action for Memory
Reference Instructions

Action
for BlastOn

Action
for BlastOff

Instruction
Fetch

IR <= Memory[PC]
oldPC <= PC
PC <= PC + 2

Instruction
Decode /
Register
Fetch

A <= Reg[CA]
B <= Reg[IR[8:5]]
ALUOut <= oldPC + immGen(IR)
Sp <= Reg[SP]
RA <= Reg[RA]

Execution,
address
comp,
branch/
jump com-
pletion

ALUOut <= A op B ALUOut <= A + immGen(IR) Reg[CA] <= B Reg[IR[8:5]] <= A

Memory
Access or
A-Type
completion

Reg[CA] = ALUOut Load: Reg[CA] <= Memory[ALUOut]
or
Store: Memory[ALUOut] <= A

26

3.
Register

Transfer
Language

Table 3.3.:Multi-Cycle RTL Part 3

StepName Action for
slti

Action
for lui

Action
for
swap

Action for
addsp

Instruction
Fetch

IR <= Memory[PC]
PC <= PC + 2

Instruction De-
code /
Register Fetch

A <= Reg[CA]
B <= Reg[IR[8:5]]
ALUOut <= oldPC + immGen(IR)
Sp <= Reg[SP]
RA <= Reg[RA]

Execution, ad-
dress comp,
branch/ jump
completion

if (a < immGen(IR))
Reg[CA] <= 1
else
Reg[CA] <= 0

Reg[CA] <= immGen(IR) CA <= B ALUOut <= SP + immGen(IR)

Memory
Access or
A-Type com-
pletion

Reg[SP] <= ALUOut

Note: No Op was not included because because it has no actions that happen besides the base 2. Instruction Fetch and Instruction Decode

27

3. Register Transfer Language

Figure 3.1.: Rough Draft Data Path

3.2. RTL Verification
To verify our RTL, we went ahead and drafted a rough draft of our datapath based on the textbook
example specified (Figure 4.19). Before we began testing individual instructions, we edited the
register file to only read in one register, since the first argument for each of instructions would be
implicit. Despite this, we still included a write register input since we need the flexibility to write to
other registers, such as our stack pointer as well as any function argument registers for our addsp
and pop instructions. With the basic implementation complete, we physically began to draw out
the RTL instructions step-by-step, taking special care to note any additional registers we need to
store our data in between the multiple actions our multi-cycle implementation takes. The rough
draft of the of the data path can be seen in figure 3.1. Once our data path is complete we will be
writing RTL tests in code form by having starting values and predicted end values. We will test that
these match at the end after the RTL actions are preformed manually.

28

3. Register Transfer Language

3.3. RTL Tests
RTL tests will show the relevant registers before and after instructions are ran and at each step
allowing one to compare the actual to expected values which will determine if the test is successful.

3.3.1. Add/Sub/And/Or/Xor Tests
add/sub/and/or/xor (sub p0):

1 PC = 0x0080
2 CA = 0x0003
3 a0 = 0x0040
4 p0 = 0x0008
5 sp = 0xFFFE
6

7 Expected: a0 = 0x0038
8

9 Sub subtracts the value of the current accumulator by the value in the specified
10 register.
11

12 IR <= Memory[PC] #IR = XXXX XXX0 1110 1001
13 oldPC <= PC #oldPC = 0x0080
14 PC <= PC + 2 #PC = 0x0082
15

16 A <= Reg[CA] #A = 0x0040
17 B <= Reg[IR[8:5] #B = 0x0008
18

19 ALUOut <= oldPC + immGen(IR) #ALUOut = 0x0080
20 Sp = Reg[sp] <= #Sp = 0xFFFE
21

22 ALUOUT <= A op B #op = sub
23 #ALUOut = 0x0038
24

25 Reg[CA] <= ALUOut #a0 = 0x0038

29

3. Register Transfer Language

3.3.2. Memory Reference Tests
lw/sw (lw 0(sp)):

1 PC = 0x0080
2 CA = 0x0003
3 a0 = 0xFEDC
4 sp = 0xFF00
5 Memory[sp] = 0x1234
6

7 Expected: a0 = 0x1234
8

9 LW puts the value stored in memory at the specified address + offset into the
10 current accumulator.
11

12 IR <= Memory[PC] #IR = 0000 0000 0010 0011
13 oldPC <= PC #oldPC = 0x0080
14 PC <= PC + 2 #PC = 0x0082
15

16 A <= Reg[CA] #A = 0xFEDC
17 B <= Reg[IR[8:5] #B = 0xFF00
18

19 ALUOut <= oldPC + immGen(IR) #ALUOut = 0x0080
20 Sp = Reg[sp] <= #Sp = 0xFF00
21

22 ALUOUT <= B + immGen(IR) #ALUOut = 0xFF00
23

24 Reg[CA] <= Memory[ALUOut] #a0 = 0x1234

30

3. Register Transfer Language

3.3.3. BlastOn Tests
blaston p0:

1 PC = 0x0080
2 CA = 0x0003
3 a0 = 0xFEDC
4 p0 = 0x1234
5 immediate = 0x0000
6 sp = 0xFF00
7

8 Expected: a0 = 0x1234
9

10 BlastOn reads the value in the specified register and puts it as the value of
11 the current accumulator.
12

13 IR <= Memory[PC] #IR = XXXX XXX0 1111 1001
14 PC <= PC + 2 #PC = 0x0082
15

16 A <= Reg[CA] #A = 0xFEDC
17 B <= Reg[IR[8:5] #B = 0x1234
18

19 ALUOut <= PC + immediate #ALUOut = 0x0082
20 Sp = Reg[sp] <= #Sp = 0xFF00
21

22 Reg[CA] <= B #a0 = 0x1234

3.3.4. BlastOff Tests

1 PC = 0x0000
2 CA = 0x0003
3 a0 = 0x0001
4 p1 = 0x0000
5

6 BlastOff reads the value of the current accumulator and puts it into the
7 specified register
8

9 IR = Memory[PC] IR[8:5]= 1000 (p1)
10 PC = PC + 2
11

12 A = Reg[CA] A=0X0001
13 IR = IR
14

15 p1 = 0X0001
16

17

31

3. Register Transfer Language

3.3.5. Branch Type Tests

1 branches take the value of a register and updates PC if it is (greater than or equal to/equal to/less than or equal to) the value in the current accumulator, adds an immediate to PC
2 Beq
3

4 PC = 0X0000
5 CA = 0X0003
6 p0 = 0X0000
7 a0 = 0X0000
8

9 IR = Memory[PC]
10 oldPC = PC
11 PC += 2
12

13 A = Reg[CA] =0X0000
14 B = Reg[IR[8:5]] =0X0000
15 ALUOut = oldPC + immGen(IR)
16

17 A==B --> PC=ALUOut

3.3.6. Jump Type Tests

1 Jumps add an immediate to pc and store the current pc to RA or zero
2 Jar
3

4 PC = 0X0000
5 RA = 0XFFFF
6 Imm= 0X000F
7

8 IR = Memory[PC]
9 oldPC = PC =0X0000
10 PC += 2 =0X0002
11

12 ALUOut = oldPC + immGen(IR) =0X000F
13 oldPC = PC =0X0002
14

15 PC = ALUOut = 0X000F
16 Reg[RA] = oldPC =0x0002

32

3. Register Transfer Language

3.3.7. Addi/Andi/Ori/Xori Tests
addi/andi/ori/xori (andi 0x0000):

1 PC = 0x0080
2 CA = 0x0003
3 a0 = 0xFEDC
4 sp = 0xFF00
5

6 Expected: a0 = 0x0000
7

8 Andi performs a bitwise and operation against the value in the current accumulator
9 and the specified immediate and stores that value in the current accumulator.
10

11 IR <= Memory[PC] #IR = XXX0 0000 0010 1111
12 oldPC <= PC #oldPC = 0x0080
13 PC <= PC + 2 #PC = 0x0082
14

15 A <= Reg[CA] #A = 0xFEDC
16 B <= Reg[IR[8:5] #B = 0x0000
17

18 ALUOut <= oldPC + immGen(IR) #ALUOut = 0x0080
19 Sp = Reg[sp] <= #Sp = 0xFF00
20

21 ALUOUT <= A op immGen(IR) #op = and
22 #ALUOut = 0x0000
23

24 Reg[CA] <= ALUOut #a0 = 0x0000

33

3. Register Transfer Language

3.3.8. Slt Test

1 SLT: sets the current accumulator to 1 if it is less
2 than the register, 0 otherwise.
3

4 slt p0
5 ===
6 PC = 0x0000
7 CA = 0x00CA, value 0x0001
8 SP = 0x00BB, value 0x0000
9 Reg[IR[8:5]] = p0, value 0x0000
10 --
11 IR <= Memory[PC] #get the instruction from Memory Location 0x0000
12 oldPC <= PC #set oldPC to currentPC: 0x0000
13 PC <= PC + 2 #increment PC by 2 to become 0x0002
14

15 A <= Reg[CA] #A gets the contents of the CA register, 0x00CA, value 0x0001
16 B = Reg[IR[8:5]] #B gets the contents of the instruction at register p0,
17 bits 8-5, which are 0x0000.
18 ALUOut = oldPc + immGen(IR) #ALUout gets value of the oldPC, 0x0000,
19 added to the immediate from the immediate gen, which is 0x0002
20 Sp = Reg[SP] #Sp gets the value of register SP, 0x00BB, value 0x0000
21

22 if(A < B) # A (1) < B (2), so CA will be 1
23 Reg[CA] <= 1 # CA gets overwritten as 1
24 else
25 Reg[CA] <= 0
26 --
27 Expected Values:
28 PC = 0x0002
29 oldPC = 0x0000
30 CA = 0x00CA, value 0x0001
31 SP = 0x00BB, value 0x0000
32 Reg[IR[12:5]] = 0x0002
33 A = 0x0001
34 ALUOut = 0x0002
35 Sp = 0x0000
36 immGen(IR) = 2
37

38 Actual Values:
39 PC = 0x0002
40 oldPC = 0x0000
41 CA = 0x00CA, value 0x0001
42 SP = 0x00BB, value 0x0000
43 Reg[IR[12:5]] = 0x0002
44 A = 0x0001
45 ALUOut = 0x0002
46 Sp = 0x0000
47 immGen(IR) = 2

34

3. Register Transfer Language

3.3.9. Slti Test

1 SLTI: sets the current accumulator to 1 if it is less
2 than the immediate, 0 otherwise.
3

4 slti 2
5 ===
6 PC = 0x0000
7 CA = 0x00CA, value 0x0001
8 SP = 0x00BB, value 0x0000
9 Reg[IR[12:5]] = 0x0002
10 --
11 IR <= Memory[PC] #get the instruction from Memory Location 0x0000
12 oldPC <= PC #set oldPC to currentPC: 0x0000
13 PC <= PC + 2 #increment PC by 2 to become 0x0002
14

15 A <= Reg[CA] #A gets the contents of the CA register, 0x00CA, value 0x0001
16 B = Reg[IR[8:5]] #B gets the contents of the instruction at 0x0000,
17 bits 8-5, which are useless in this case.
18 ALUOut = oldPc + immGen(IR) #ALUout gets value of the oldPC, 0x0000,
19 added to the immediate from the immediate gen, which is 0x0002
20 Sp = Reg[SP] #Sp gets the value of register SP, 0x00BB, value 0x0000
21

22 if(A < immGen(IR)) # A (1) < immGen(IR) (2), so CA will be 1
23 Reg[CA] <= 1 # CA gets overwritten as 1
24 else
25 Reg[CA] <= 0
26 --
27 Expected Values:
28 PC = 0x0002
29 oldPC = 0x0000
30 CA = 0x00CA, value 0x0001
31 SP = 0x00BB, value 0x0000
32 Reg[IR[12:5]] = 0x0002
33 A = 0x0001
34 ALUOut = 0x0002
35 Sp = 0x0000
36 immGen(IR) = 2
37

38 Actual Values:
39 PC = 0x0002
40 oldPC = 0x0000
41 CA = 0x00CA, value 0x0001
42 SP = 0x00BB, value 0x0000
43 Reg[IR[12:5]] = 0x0002
44 A = 0x0001
45 ALUOut = 0x0002
46 Sp = 0x0000
47 immGen(IR) = 2
48

35

3. Register Transfer Language

3.3.10. Lui Test

1 LUI: sets the current accumulator to the top 8 bits of the immediate.
2

3 lui 2570
4 ==
5 PC = 0x0000
6 CA = 0x00CA, value 0x0001
7 SP = 0x00BB, value 0x0000
8 Reg[IR[15:5]] = 0x0A0A
9 ---
10 IR <= Memory[PC] #get the instruction from Memory Location 0x0000
11 oldPC <= PC #set oldPC to currentPC: 0x0000
12 PC <= PC + 2 #increment PC by 2 to become 0x0002
13

14 A <= Reg[CA] #A gets the contents of the CA register, 0x00CA, value 0x0001
15 B = Reg[IR[8:5]] #B gets the contents of the instruction at 0x0000,
16 bits 8-5, which are useless in this case.
17 ALUOut = oldPc + immGen(IR) #ALUout gets value of the oldPC, 0x0000, added to the
18 immediate from the immediate gen, which is 0x0002
19 Sp = Reg[SP] #Sp gets the value of register SP, 0x00BB, value 0x0000
20

21 Reg[CA] <= immGen(IR)[15:7]
22 ---
23 Expected Values:
24 PC = 0x0002
25 oldPC = 0x0000
26 CA = 0x00CA, value 0x000A
27 SP = 0x00BB, value 0x0000
28 Reg[IR[12:5]] = 0x0002
29 A = 0x000A
30 ALUOut = 0x0A0C
31 Sp = 0x0000
32 immGen(IR) = 2570
33

34 Actual Values:
35 PC = 0x0002
36 oldPC = 0x0000
37 CA = 0x00CA, value 0x000A
38 SP = 0x00BB, value 0x0000
39 Reg[IR[12:5]] = 0x0002
40 A = 0x000A
41 ALUOut = 0x0A0C
42 Sp = 0x0000
43 immGen(IR) = 2570

36

3. Register Transfer Language

3.3.11. Swap Test

1 PC = 0x0000
2 CA = 0x00CA, value 0x0001
3 SP = 0x00BB, value 0x0000
4 Reg[IR[8:5]] = 0x0002
5

6 Swap: switches the current accumulator to rs1
7

8 swap a2
9

10 IR = Memory[PC] #get the instruction from Memory Location 0x0000
11 oldPC <= PC #set oldPC to currentPC: 0x0000
12 Pc = PC + 2 #increment PC by 2 to become 0x0002
13

14 a = Reg[CA] #A gets the contents of the CA register, 0x00CA, value 0x0001
15 B = Reg [IR[8:5]] #B gets the contents of the instruction at 0x0000, bits 8-5.
16 ALUOut = oldPc + immGen(IR) #ALUout gets value of the oldPC, 0x0000,
17 and the immediate gen, which is empty
18 Sp = Reg[SP] #Sp gets the value of register SP, 0x00BB, value 0x0000
19

20 CA = B #CA becomes B, the contents of the instruction at 0x0000,
21 bits 8-5, and the current value is overwritten

3.3.12. AddSP Test

1 PC = 0x0000
2 CA = 0x00CA, value 0x0001
3 SP = 0x00BB, value 0x0000
4 Reg[IR[8:5]] = 0x0002
5

6 Addsp: increments the sp by the imm and stores new value into sp
7 addsp 4
8

9 IR = Memory[PC] #get the instruction from Memory Location 0x0000
10 oldPC <= PC #set oldPC to currentPC: 0x0000
11 Pc = PC + 2 #increment PC by 2 to become 0x0002
12

13 a = Reg[CA] #A gets the contents of the CA register, 0x00CA,
14 value 0x0001
15 B = Reg [IR[8:5]] #B gets the contents of the instruction at 0x0000, bits 8-5.
16 ALUOut = oldPc + immGen(IR) #ALUout gets value of the oldPC, 0x0000,
17 and the immediate gen, which is 4, to become 0x0004
18 Sp = Reg[SP] #Sp gets the value of register SP, 0x00BB, value 0x0000
19

20 ALUOut = SP + immGen[IR] #AluOut becomes 0x0000 + 4, to become 0x0004
21 Reg[sp] = ALUOut #the value of Register SP becomes 0x0004.

37

3. Register Transfer Language

3.4. Components
Components needed to implement the RTL, with the input, output, and control signals included for
each, as well as a list of the RTL symbols that will be implemented with each component.

• Registers:
– Input Signals: in[15:0], defaultValue[15:0]
– Output Signals: out[15:0]
– Control Signals: RegWrite[0:0], reset[0:0], clk[0:0],
– Symbols Implemented: PC, oldPC, ALUOut, SP, IR, A, B, CA

• Register File:
– Input Signals: TReg[3:0], WriteReg[15:0], WriteDat[15:0], CA[3:0]
– Output Signals: CADat[15:0], SPDat[15:0], TRegDat[15:0]
– Control Signals: Write[0:0], Reset[0:0]
– Symbols Implemented: Reg[]

• ALU:
– Input Signals: A[15:0], B[15:0]
– Output Signals: ALU_Out[15:0], ALU_Flag[1:0]
– Control Signals: ALU_Op[3:0]
– Symbols Implemented: +, OP

• Memory:
– Input Signals: addr[15:0], writeData[15:0]
– Output Signals: readData[15:0]
– Control Signals: memRead[0:0], memWrite[0:0], clk
– Symbols Implemented: Memory[]

• Immediate Generator:
– Input Signals: Inst[15:0]
– Output Signals: IMM[15:0]
– Control Signals: OP[1:0]
– Symbols Implemented: immGen()

• Comparator:
– Input Signals: A[15:0], B[15:0]
– Output Signals: aLTb[0:0], aEQb[0:0], aGEb[0:0]
– Symbols Implemented: <, ==, >=

• ALU Control:
– Input Signals: IR[15:0]
– Output Signals: ALUOp[3:0]

38

4. Component Specifications

4.1. Comparator
The comparator component takes in the value of 2 different 16 bit inputs and outputs a single logical
value which corresponds to their comparison. The schematic symbol for the comparator can be
seen in Figure 4.1 and a example truth table for a simple 1 bit comparator which gives an overview
of the funcionality of a comparator can be seen in Table 4.1

List of Outputs
• 𝐴 > 𝐵: This will output high when the value of A is greater than the value of B
• 𝐴 = 𝐵: This will output high when the value of A is equal to the value of B
• 𝐴 < 𝐵: This will output high when the value of A is less than the value of B

Figure 4.1.: Comparator Schematic Symbol

Table 4.1.: Example 1 Bit Comparator Truth Table
A B A > B A = B A < B

1 0 1 0 0
0 1 0 0 1
1 1 0 1 0

39

4. Component Specifications

4.1.1. Hardware Implementation Plan
The following hardware implementation as seen in figure ?? will be used to create a comparator.
Each one of the inputs will be passed into a separate adder, the second input is inverted. The carry
bit of each is transferred to the next adder and the final bit can be used to determine if A > B, The
sums of all of the adders are ANDed together and that output will determine if the inputs are equal
to each other. To determine if A < B one can simply NOR the AND gate output and the final carry
bit.

4.1.2. Unit Tests
To unit test the comparator, we will develop a Verilog test bench that tests the functionality of each
comparison: <, >, =. Once the comparison has been done, the test bench will determine whether the
correct output signal is set to 1. If not, the failure will be marked in the console, which will then be
used for debugging purposes.

40

4. Component Specifications

4.2. ALU
The ALU takes has 3 inputs A, B, and OP. A and B are the operands and the OP allows for a selection
of what operation is to be done on the operands. One can see a list of ALU operations in table 4.2.
The schematic symbol can be seen below in Figured 4.2

Figure 4.2.: ALU Schematic Symbol

The ALU OP input takes in a 4 bit input and uses that to determine the given operation. A 4 bit
input was used to allow for future expand-ability for more operations.

Table 4.2.: ALU Operations
Operation Code Description

A + B 0000 Add
A - B 0001 Subtract
A « B 0010 Shift Left
A & B 0011 Bitwise AND
A | B 0100 Bitwise OR
A ⊕ B 0101 Bitwise XOR

The ALU also has status flags which will occur depending on the result of the operation. This
can be seen in Table 4.3.

41

4. Component Specifications

Table 4.3.: ALU Status Flags
Flag Code Description
N 00 Set when the result

of the operation was
Negative

Z 01 Set when the result
of the operation was
Zero

V 10 Set when the
operation caused
overflow

4.2.1. Hardware Implementation Plan
Case statements in Verilog will used to implement this unit as seen below.

1 case(ALU_OP)
2 3'b0000: // Addition
3 ALU_Result = A + B ;
4 3'b0001: // Subtraction
5 ALU_Result = A - B ;
6 3'b0010: // Shift Left
7 ALU_Result = A << B;
8 3'b0011: // Bitwise AND
9 ALU_Result = A & B;
10 3'b0100: // Bitwise OR
11 ALU_Result = A | 1;
12 3'b0101: // Bitwise XOR
13 ALU_Result = A ^ 1;
14 default: ALU_Result = A + B ;
15 endcase
16

4.2.2. Unit Tests
To test the ALU, we would write a Verilog test bench to test all of the different possible ALU Op
code inputs to determine whether or not the ALU performed the operation correctly.

42

4. Component Specifications

4.3. Registers
The individual registers throughout the data path store values for use in-between cycles since they
will be lost, otherwise.

Figure 4.3.: Register Schematic Symbol

4.3.1. Hardware Implementation Plan
To implement a Register in hardware, we will create a Verilog module that has 1 input, value, and 1
output, output. Since this module acts only as data holder, there is nothing more this module will
need to do. There will also be a version of this register that has a reset input to it. This reset input
will set the register back to a default value as specified by a paramter during it’s creation. This
version of the register will be used for IR to hold instructions, PC along with old PC to hold to the
program count.

4.3.2. Unit Tests
To test the Verilog implementation of this component, we will test writing a value to the register
and ensure the value is held until it is changed again. We will also be testing the required clock
cycles needed to change the value in the register. For the registers with the default values we will
need to test that the reset will reset back to this default value.

43

4. Component Specifications

4.4. Register File
The register file will store the bulk of the registers for the processor. The register file has the
following inputs and outputs.

Inputs
• Reg Write: Enables the ability to write to the register file. Set input to low to do read only
• Select CA: With a given immediate (1-4) it will select it will select which accumulator to set
as the current accumulator

• Write Data: Determines the data to write to a given register from write reg
• Write Reg: Determines which register to write to
• Read Reg: Determines which register to read from a given instruction

Outputs
• SP: Stack pointer register output
• Read Current Accumulator: Outputs the current accumulator value
• Read Data 2: Outputs the second register value
• RA: Return Address Register Output

Figure 4.4.: Register File Schematic Symbol

4.4.1. Hardware Implementation Plan
To implement the Register File in hardware, we will create a Verilog module that has 3 inputs: Read
Reg, Write Reg, Write Data; 3 outputs: SP, Read Current Accumulator, Read Data 2; and 2 control
signals: Reg Write, Select CA. If Reg Write is set to 1, we will write the data from the Write Data

44

4. Component Specifications

input to the register denoted in Write Reg. Registers are stored in an array and accessed as such.
Select CA changes the register that the current accumulator points to.

4.4.2. Unit Tests
To test the Verilog implementation of this component, we will test each individual function of the
register file: reading, writing, and swapping. To test reading, we will give the register file a register
with a value to read and ensure that the value comes out of Read Data 2. To test writing, we will
give the register file a register to write to and a subsequent value and ensure that value is what is in
the register after running. To test the swapping of accumulators, we will provide the register file
with a new register identifier to point the current accumulator to. After this, we will ensure that
the current accumulator points to where it’s supposed to be.

45

4. Component Specifications

4.5. Memory

Figure 4.5.:Memory File Schematic Symbol

4.5.1. IO
The memory module includes input and output. For our processor this will be used for memory
mapped IO. There will be a dedicated section of memory for memory mapped IO as seen in Figure
4.6. The input is address with 0x00 and the output is addressed with 0x08.

Using memory mapped IO in our processor allows us to more easily pass in input and output
using already created instructions. Examples of input and output can be seen below.

Example of Loading Input to P0

1 blastOn zero
2 lw 0(zero)
3 blastOff p0

Example of Storing output on to the stack

1 sw 8(zero)

46

4. Component Specifications

Figure 4.6.:Memory File Layout

4.5.2. Hardware Implementation Plan
To implement the Memory File in hardware, we will create a Verilog module that has 2 inputs:
Address, Write Data; 3 outputs: Read Data, Input, Output; and 1 control signal: Mem Write. If Mem
Write is set to 1, we will write the data from the Write Data input to the address denoted in address.
Memory is stored in a single cell RAM template as recommened by quartus.

To add IO to the memory a wrapper will be created around memory that will detect when an
input or output address is selected. When an input address is selected the input will be redirected to
the read data output. When an output is selected the write data input will be redirected to the output.

4.5.3. Unit Tests
To test the Verilog implementation of this component, we will test each individual function of the
memory file: reading and writing. To test reading, we will give the memory file an address with a
value to read from and ensure that the value comes out of Read Data. To test writing, we will give the
memory file an address to write to and a subsequent value and ensure that value is what is in memory
at that address after running. To test input a given input will be sent in with an input address and
that input will be confirmed to be the read data output. To test output a given write data input
will be sent in with an output address and the output will be confirmed to be equal to the given input.

47

4. Component Specifications

4.6. Immediate Generator

Figure 4.7.: Immediate Generator Schematic Symbol

4.6.1. Hardware Implementation Plan
The immediate generator takes a 2 bit control signal and an instruction and outputs a sign extended
Immediate. The generator is implemented in Verilog by taking bytes of the instruction and copying
into the extended immediate. The control signal is used to determine where bytes are read from.

4.6.2. Unit Tests
To test the Verilog implementation of this component, instructions that had (in base 10) 0, 0, 16, and
-1 as the translation of their immediate bytes were passed into the generator with the appropriate
control signal. For the first 0 input all bits unused by the generator were set to 0 and for the second
all were set to 1. All valid control signals were tested under these conditions.

48

4. Component Specifications

4.7. ALU Control
The ALU Control unit takes in the 16 bit instruction as the input, and decodes the instruction to
determine a 4 bit op code that will control the ALU. The schematic symbol for the control unit can
be seen in figure 3.7.

Figure 4.8.: ALU Control Schematic Symbol

4.7.1. Hardware Implementation Plan
To implement the ALU Control unit in Verilog, we will break apart the 16 bit input to isolate
the instruction’s op code and funct2 to determine which operation to use. Once the operation is
determined, the ALUOp output signal will be set to the appropriate code, which are described in
Table 3.2.

4.7.2. Unit Tests
To test the ALU Control unit, we will create a Verilog test bench that tests each type of operation
that the control unit could output. For example, we would test the unit with a 16 bit input that is
identical to an add instruction, and then affirm that the unit produces a 0000 Op code. The other
tests would test the other operations and affirm their outputs as well.

49

5. Multi-Cycle Data Path

The diagram below represents the multi-cycle data path implementation containing the components outlined above.

Figure 5.1.:Multi-Cycle Data Path

50

6. Control Specifications

6.1. Control Signals
• IorD: 1 bit. Determines whether we use the value from PC (instruction) or ALUOut (data) to
perform memory operations at.

• MemWrite: 1 bit. Determines whether we want to write data into memory at the specified
address.

• RegWrite: 1 bit. Determines whether or not we are able to write into the registers stored in
our register files.

• RegDest: 2 bits. Determines the destination register the result of our instruction will write
into (if applicable). Currently there are four options:

– 00: Write into the specified register in the instruction (rs1).
– 01: Write into the current accumulator.
– 10: Write into the return address register.
– 11: Write into the stack point register.

• GT: 1 bit. Determines whether there is a valid branch if A is greater than B.

• LT: 1 bit. Determines whether there is a valid branch if A is less than B.

• EQ: 1 bit. Determines whether there is a valid branch if A is equal to B.

• Swap?: 1 bit. Determines whether or not we are performing our swap instruction, and need
to update the value in our CA (current accumulator) register.

• SLT?: 1 bit. Determines whether or not we are performing a Set Less Than instruction. Saves
the logic from the comparator into ALUOut instead of the output of the ALU.

• Branch?: 1 bit. Determines whether or not we are currently performing a branch instruction.
Used in conjunction with GT, LT, and EQ to determine the value of the next PC address.

• ALUOp: 4 bits. Determines the operation our ALU will perform on its two inputs. Currently
the four bit size allows for a potential sixteen different operations we can perform, although
currently we are only utilizing six.

• ALUSrc1: 3 bits. Determines the value of the first input for our ALU. Currently there are
four options:

– 000: The value stored in the register A.

51

6. Control Specifications

– 001: The value stored in the register Sp.
– 010: The value stored in the register oldPC.
– 011: The value stored in the register B.
– 100: The value stored in the register Ra.

• ALUSrc2: 1 bit. Determines the value of the second input for our ALU. Currently there are
two options:

– 0: The immediate generated by our immGen.
– 1: The value stored in the register B.

• WriteVal: 3 bits. Determines the result we would like to write into either our memory file or
our register file. Currently there are five options:

– 000: The value stored in the register A.
– 001: The result of our ALU operations (found in the register ALUOut).
– 010: The value stored in the register oldPC.
– 011: The value stored in the register B.
– 100: The value pulled from memory at the address in ALUOut (Mem[ALUOut]).
– 101: The immediate generated by our immGen.

• PCWrite: 1 bit. Determines whether we can overwrite the value currently stored in the PC
register with the value from our PC subsystem.

• IRWrite: 1 bit. Determines whether we can overwrite the value currently stored in the
Instruction Register with the instruction fetched from the memory file.

• Reset: 1 bit. Cannot be activated through an instruction. When activated, all registers’
contents are reset to its specified default value.

6.2. Control Unit Specification
The control unit takes in the instruction parsed from the instruction register (IR), and decides based
on the instruction (parsed from the combination of our op code and f2 fields) the various signals to
the other components and registers in our multi-cycle implementation.

The mapping of our control signals for each instruction per cycle for our multi-cycle implemen-
tation can be found in the appendix.

In addition, the control unit contains the ability to activate a reset signal, which when activate
will wipe all of the contents stored in registers. While this capability cannot be activated through
an instruction, it can be utilized through a single bit input to the control unit, which will in turn
activate the reset signal.

52

6. Control Specifications

6.3. Control Unit Testing
The control unit will be tested through procedurally going through each instruction and testing
each of the possible outputs through each cycle of the instruction.

Certain signals change per cycle of the instruction (ALUOp and ALUSrc1 being good examples
of this). Special care will be used to ensure that the signals change to their correct values at the
appropriate times. The handling of these control signals will be handled through the individual
components and subsystems and their own unique testing.

In addition, to handle the issue of "dangling" control signals, certain signals will be defaulted to 0
after each state change. Such signals are: PCWrite, IRWrite, MemWrite, RegWrite.

6.4. ALU Control Unit Specification
ALU Control functions as a sub-unit to the main control unit. It is separated to help simplify the
logic and clarify its role and process in our visual datapath. Similar to the control unit, ALU Control
will received the parsed instruction from the instruction register, and depending on the received
opcode and f2 combination, the appropriate operation will be performed on the operands.

6.5. ALU Control Unit Testing
Like the control unit, ALU control will be tested on an instruction basis. The logic is similar, albeit
smaller in scope.

Like the control unit, ALUOp is subject to change over the multiple cycles of an instruction. While
the first instruction will always be add for our PC + immediate calculation, the second instruction
can be one of the other five operations it can perform. Sometimes the result of the ALU is not used.
In these cases, the ALUOp will be defaulted to add, even if the summation is not used.

53

7. Testing

7.1. Unit Testing
Unit Testing for each component can be seen in Section 2.4:

Each component will be tested using Boundary Value Analysis, with the minimum value, a nominal-
minimum value, a nominal value, a nominal- maximum value, and maximum value checked for
each. We will also take into special consideration edge cases that could cause the instruction to fail,
and test for them in our cases. Components will be modified until the tests pass.

7.2. Integration Testing
Components will first be integrated into subsystems, and then into the system as a whole. Inte-
gration Testing will be used to catch faults in the components not already found with the Unit
Tests, and will be done with an iterative approach. We will first start by isolating components into
subsystems, and once no faults are found in the subsystems, the subsystems will be combined to
create each individual cycle, until the entire system has been created and is being tested.

We will integrate the components based on their functionality, making small subsystems that can
be combined and tested to create the entire system. For example, we could test the combination of
the comparator and branching logic to ensure the branching subsystem works. Another subsystem
that could be tested could be the Immediate Generator and the ALU, to verify immediate arithmetic.

7.3. Subsystem Testing
Subsystems will be defined based on the components needed for specific instructions. Subsystem
tests will still follow BVA; however, the tests themselves will focus on the output of the whole
system itself rather than the individual components of the system. For instance, when testing the
branching subsystem, we would ensure the subsystem outputs the correct branch signal instead of
the individual comparator outputs.

Initially, we will begin by developing and testing small distinct subsystems, that are then com-
bined to create bigger subsystems once the smaller subsystems are tested thoroughly. Once we have
gotten to the point where there are no more subsystems, we will advance to System Testing.

54

7. Testing

7.4. System Testing
All Unit Tests, Integration Tests, and Subsystem tests will be ran on the system as a whole. Each
individual subsystem will be combined together and tested using both a Verilog testbench, to test
the combined subsystems, and the RelPrime algorithm to ensure our system works to specification.

With RelPrime being our final benchmark, we will start with checking the output of a simple
arithmetic instructions: simple addition and subtraction with values in registers along with im-
mediates. After arithmetic instructions are proven to be functional, we will then begin testing
instructions that put values into registers such as blastOn and blastOff. Once we have verified that
all arithmetic and register based instructions are working, we will begin to focus on testing pulling
data and storing data into memory.

To test memory, we will test instructions such as lw and sw to ensure that they are correctly
inserting values onto the stack and other memory addresses. After ensuring that these instructions
are functional, we will then begin to test input and output since we using memory mapped IO. Next,
we will start running and verifying that basic loops are functional, which will test our branch and
jump instructions. With the basis of our instruction set now defined and tested as a whole, we can
start to test multiple procedure calls, along with validation of our calling conventions by loading
small programs into memory such as the defined calling procedures example and GCD. Once we
have verified that our procedure calls are working correct, we will then begin to test and debug
RelPrime until the expected output is received.

55

8. Subsystems Specifications

The different subsystems of our data path are indicated by the different colored sections seen in
Figure 8.1.

Figure 8.1.: Subsystem Specification on Data Path

Based on the colors in the image, the denoted subsystems are as follows:
• Red - PC Subsystem
• Brown - Memory Subsystem
• Purple - Register File Subsystem
• Blue - Branch Subsystem
• Green - ALU Subsystem

56

8. Subsystems Specifications

8.1. PC Subsystem
This subsystem represents the components in the data path that handle the changing of the PC for
either a jump, branch, or move to a next instruction.

The PC_Dest "control signal" comes from the branch subsystem, and that connection will be
tested when the two subsystems are combined for further subsystem testing. WritePC determines
whether the value in PC can be overwritten, determined by the current state of the control unit.

The PC subsystem uses a multiplexor, controlled by the branch subsystem logic, to determine
whether the PC is rewritten to PC + 2 or PC + immediate.

Components List
• PC register
• oldPC register
• PC + 2 Adder
• ALUOut register
• PC_Dest "control signal"
• PCWrite control signal

Inputs
• ALUOut (16 bits)
• PC_Dest (1 bit)
• PCWrite (1 bit)

Outputs
• PC (16 bits)
• oldPC (16 bits)

57

8. Subsystems Specifications

8.2. Memory Subsystem
This subsystem represents the components in the data path that handle the use of memory for either
reading, writing, instruction fetching, and external input and output.

The Memory subsystem uses an address determined by a multiplexor, controlled by the IorD
control signal, to either read from or write to in the memory array based on the MemRead and
MemWrite control signals. The read data in memory is then stored in the instruction register for
decoding. Similar to the contents of the PC register only being able to written to while PCWrite is
asserted, the Instruction Register’s contents can only be changed if the IRWrite control signal is
asserted.

Component List
• Memory File
• Instruction register
• IorD control signal
• MemWrite control signal
• IRWrite control signal.

Inputs
• PC (16 bits)
• ALUOut (16 bits)
• IorD (1 bit)
• MemRead (1 bit)
• MemWrite (1 bit)
• IRWrite (1 bit)
• IOInput (16 bits)

Outputs
• Mem[Address] (16 bits)
• IO Output (16 bits)
• IR (16 bits)

58

8. Subsystems Specifications

8.3. Register File Subsystem
This subsystem represents the components in the data path that handle the use of the register file
for either reading from or writing to a register in the file.

The Register File subsystem uses the address provided by the instruction register to either read
from in the register array, which is stored into B. The subsystem also uses a write address, determined
by a multiplexor, controlled by RegDest, to write the data passed into it. This subsystem always
outputs the current stack pointer into the SP register, and the value of the current accumulator in A.

Components List
• Register File
• RA register
• SP register
• A register
• B Register
• CA Register
• Immediate Generator
• RegDest control signal
• Swap control signal
• RegWrite control signal

Inputs
• Swap (1 bit)
• RegDest (1 bit)
• RegWrite (1 bit)
• Instruction (16 bits)

Outputs
• Sp (16 bits)
• A (16 bits)
• B (16 bits)
• RA (16 bits)
• ImmGen (16 bits)

59

8. Subsystems Specifications

8.4. Branch Subsystem
This subsystem represents the components in the data path that handle the branch comparisons
needed to determine whether or not the PC should be affected by ALUOut.

The Branch subsystem uses the values provided by the A and B registers in the comparator to
output relevant signals as to whether A is either less than, equal to, or greater than B. These singles
are then combinationally combined with the control signals to determine whether or not the PC
should be overwritten.

Components List
• Comparator component
• A register
• B register
• Branch control signal
• GT control signal
• EQ control signal
• LT control signal

Inputs
• A (16 bits)
• B (16 bits)
• GT (1 bit)
• LT (1 bit)
• EQ (1 bit)
• Branch (1 bit)

Outputs
• PC_Dest (1 bit)
• SLT_Val (1 bit)

60

8. Subsystems Specifications

8.5. ALU Subsystem
This subsystem represents the components in the data path that handle the operations and values
that go through the ALU.

The ALU subsystem uses the values provided two multiplexors, controlled by the ALUSrc1
and ALUSrc2 control signals, as inputs to the ALU. The operation between those inputs is de-
termined by the ALUOp control signal determined by the ALU Control unit. The output of the
ALU is stored in the ALUOut register unless the SLT control signal is 1, then the input SLT_Val is
written to ALUOut. Any flags thrown by the ALU are stored in the ALUFlag register for use later.
Finally, the control signalWriteVal determines which output (OutVal) will be sent to the Register File.

Components List
• ALU component
• ALU Control unit
• ALUOut register
• ALUFlag register
• ALUOp control signal
• ALUSrc1 control signal
• ALUSrc2 control signal
• SLT control signal
• WriteVal control signal

Inputs
• A (16 bits)
• Sp (16 bits)
• oldPC (16 bits)
• B (16 bits)
• ImmGen (16 bits)
• ALUSrc1 (3 bits)
• ALUSrc2 (1 bit)
• SLT (1 bit)
• SLT_Val (1 bit)
• WriteVal (3 bits)

Outputs
• OutVal (16 bits)
• ALUOut (16 bits)
• ALUFlag (2 bits)

61

9. Performance

When running the S.W.H.A.P. processor with an input of 0x13B0, the processor was observed to run
a total of 61,384 instructions in roughly 20.47 ms, producing the output 0x000B as seen in Table 9.1
and Figure 9.2. Considering the amount of looping that must be done to find the correct M that is
relatively prime to 0x13B0, it is understandable that 61 thousand instructions were run. Additionally,
the processor was observed to go through 204,726 different cycles. This combined with the number
of instructions produces the average Cycles Per Instruction (CPI) to be 3.34 cycles. Considering
most of our instructions in the instruction set are 4 cycles and the relPrime program contains a lot
of swap instructions which are 3 cycles, a CPI between 3 and 4 was highly expected.

Table 9.1.: Performance Summary
Metric Result

Bytes Needed for Relprime 142
Total Registers 407
Total Mem Bits 524,288/608,256 (86%)
Total Logical Elements 1,338/28,848 (5%)

Instructions 61,384
Cycles 204,726
CPI 3.34
Total Exec Time for 0x13B0 (ms) 20.47295
Clock Frequency 76.46 MHz

Overall, the relPrime program consumes 142 bytes of the memory file, which includes all instruc-
tions, memory variables, and constants. Though this is larger than we initially would have hoped, it
is understandably this large considering the addition of a branch delay slot after each branch or
jump. It was decided that it would be best to trade some of our memory space for performance, so
142 bytes makes sense. Our clock speed was found to be 76.46 MHz as seen in Figure 9.1. The total
number of registers used throughout the entire design was found to be 407 registers. Additionally,
the total number of memory bits used is 524,288 which is 86% of the total memory bits available.
Finally, the total number of logical elements was found to be 1,338, which is 5% of the total logical
elements available to be used.

62

9. Performance

Figure 9.1.: Quartus Screen Captures

Figure 9.2.: Quartus Screen Captures

63

10. Machine Code Assembler

10.1. Instructions for Basic Usage
1. Go to baseinput.txt

2. Write assembly using pseudo instructions, labels and changing where binary is written to as
needed

3. Ensure no errors

4. Copy output from output.txt

10.2. Assembly Language Tokens and Usage

10.2.1. Enable/Disable memory locations and comments
By default the assembler will output comments and the assumed hex values of the address in
memory where an instruction will lie. If disabling this is desired to, say, copy binary directly into a
test file, writing a line that says "disableExtras" will disable these extra printouts.

10.2.2. Set Memory Address %
% - sets memory address. Can be changed mid-file if needed. sets the memory address where the
next instruction will be written. Starts writing to 0X0000 by default.

Example

% 48879

In this example, the next instruction will be written at address 0XBEEF

% 0
Inst1
Inst2
% 18
Inst3

In this example Inst1 is written at 0X0000, Inst2 is written at 0X0002 and Inst3 is written at 0X0016.

64

10. Machine Code Assembler

10.2.3. Add a Label $
$ - add a label. Labels will interpret all text (including colons) after $ and before a space as a the
label

Examples

$ loop
Inst
J loop

In this example j jumps to "loop"

$ loop:
Inst
J loop:

In this example j jumps to "loop:"

If % and $ are used in conjunction, jumps and branches will still be calculated correctly

% 0
$ start
Inst
J notstart
% 500
$ notstart
J start

In this example if pc is ever set to 0X0000 an infinite loop of performing Inst, jumping to not start
and jumping to start will occur.

10.3. Instruction Syntax
Instruction arguments are split using spaces, not commas. Having a space before an instruction
WILL result in an error, having multiple spaces between instruction arguments WILL result in an
error, having commas anywhereWILL result in an error. Anything after the last expected argument
will be ignored for the purpose of assembly but will be printed out as a comment. Comment by
adding text after a space after an instruction is the safest way to comment. Text after % and $ may
or may not be displayed in outputs.

65

10. Machine Code Assembler

Instructions are not capitalized but the O in blastOn/blastOff is

Spaces in branches, j and jl and parentheses in lw/sw are required

See Table 10.1 for table of instructions syntax.

Table 10.1.: Instruction Syntax

Instruction
Arg1 (and Arg2 for branches)

add <reg>
sub <reg>
blastOn <reg>
blastOff <reg>
addi <immediate>
slli <immediate>
lui <immediate>
lw <immediate>(<reg>)
sw <immediate>(<reg>)
addsp <immediate>
jar <label>
j <immediate> <label> //always uses 0
jl <immediate> <label> //always uses 0
jarl <label>
bge <reg> <label>
beq <reg> <label>
blt <reg> <label>
or <reg>
and <reg>
xor <reg>
slt <reg>
ori <immediate>
andi <immediate>
xori <immediate>
slti <immediate>
nop <none>

10.3.1. Labels and Limits
A label can use any character represent able with 33-126 on an ASCII table with the sole exception
of “‘” (96) which is reserved for the singleLevelLoop pesudo instruction

66

10. Machine Code Assembler

10.3.2. Pseudo Instructions
Push

Syntax: “push <reg>”
Description: pushes current accumulator to sp-2 and decrements sp by 2

Pop

Syntax: "pop <reg>"
Description: pops sp to current accumulator and increments sp by 2

Li

Syntax: "li <immediate>"
Description: loads up to a 16 bit immediate into CA

singleLevelLoop

Syntax: “singleLevelLoop <immediate>”
Description: prepares to loop immediate times
Restriction: x12, x13, x14 are overwritten and reserved until endLoop is called, cannot call singleLev-
elLoop again until endLoop is called

endLoop

Syntax: “endLoop”
Description: describes the end to singleLevelLoop, all code between singleLevelLoop and endLoop
will be run every loop
Requirements: must be called after singleLevelLoop

67

10. Machine Code Assembler

10.3.3. User Error Catching
The assembler will catch the following errors

1. Immediates being too large for their available size

2. Multiple instructions sharing the same address in memory

3. Instructions being written to outside the available memory space

Bad assembly Example:

1 % 0 // write the next instruction at 0X0000
2 $ hello // set a label at memory address 0X0000
3 j 0 hi // jump to an address way outside of the
4 //range of a jump (using a positive immediate)
5 addi 1000000 //uses an immediate that is larger
6 //than 11 bits (positive) (addi uses 11 bits)
7 addi -1000000 //uses an immediate that is larger
8 //than 11 bits (negative) (addi uses 11 bits)
9 ori 1000 //uses an immediate that is larger than 7
10 //bits (positive) (ori uses 7 bits)
11 % 20000000 // write the next instruction well outside of memory’s bounds
12 $ hi // set a label in the middle of nowhere
13 j 0 hello // jump to an address way outside of
14 //the range of a jump (using a negative immediate)
15 % 0
16 ori -1000 //uses an immediate that is larger than 7
17 //bits (positive) (ori uses 7 bits)
18 //(also writes to the same address as “j 0 hi”)

Will Throw the Following Errors:

1. JUMP TOO BIG (A J-TYPE INSTRUCTION TRIED TO JUMP FORWARD MORE THAN 1023
INSTRUCTIONS) Error at line: 4 in input.txt

2. JUMP TOO BIG (A J-TYPE INSTRUCTION TRIED TO JUMP FORWARD MORE THAN 1023
INSTRUCTIONS) Error at line: 4 in input.txt

3. IMMEDIATE TOO LARGE! IMMEDIATE LARGER THAN 1023 PASSED INTO AN INSTRUC-
TION THAT ACCEPTS UP TO 11 BIT IMMEDIATES Error at line: 5 in input.txt

4. IMMEDIATE TOO SMALL! IMMEDIATE SMALLER THAN -1024 PASSED INTO AN IN-
STRUCTION THAT ACCEPTS UP TO 11 BIT IMMEDIATES Error at line: 6 in input.txt

5. IMMEDIATE TOO LARGE! IMMEDIATE LARGER THAN 63 PASSED INTO AN INSTRUC-
TION THAT ACCEPTS UP TO 7 BIT IMMEDIATES Error at line: 7 in input.txt

6. JUMP TOO BIG (A J-TYPE INSTRUCTION TRIED TO JUMP BACKWARD MORE THAN 1024
INSTRUCTIONS) Error at line: 10 in input.txt

68

10. Machine Code Assembler

7. ERROR: PROGRAM EXCEEDS MEMORY BOUNDS CHANGE % TO BE FURTHER FROM
MEMORY EDGE OR SHRINK PROGRAM Error at line: 11 in input.txt

8. IMMEDIATE TOO SMALL! IMMEDIATE SMALLER THAN -64 PASSED INTO AN INSTRUC-
TION THAT ACCEPTS UP TO 7 BIT IMMEDIATES Error at line: 12 in input.txt

9. ERROR: MULTIPLE INSTRUCTIONS WITH THE SAME ADDRESS, MULTIPLE INSTANTIA-
TIONS OF % TOO CLOSE TO EACH OTHER

10. Error 9 again

Note that errors other than "MULTIPLE INSTRUCTIONS WITH THE SAME ADDRESS" provide a
line to go to see where the error originated. To provide additional clarity, this line is in input.txt, not
baseinput.txt. If, however, a user wishes to see the line their issue was from in their baseinput.txt
file, they may simply go to the line in input.txt where the error occurred and added to the comments
of that line, will be a bit of text saying "from line<number>" which corresponds to that instruction’s
line in baseinput.txt.

69

11. Conclusion

Designing and creating this processor was a very informative and challenging task. Our team learned
a lot in both computer architecture and team work. Something that made this project especially
challenging was you were learning in class during the project portion rather than applying already
known knowledge. By doing it this way we were able to learn from our previous mistakes and learn
more about best practices.

While working on this processor one of the biggest hurdles we needed to overcome was the
integration of the subsystems. The part of this that we struggled the most with was timing of the
various sub systems. Though each of the systems worked independently of each other the way they
were programmed wasn’t always to the specifications of what our control was doing. For example
creating temporary registers to store values in them that should have been assign statements or
making logic that was combinational clock based. To address these issues we created and ran better
system tests along with using wave form debugging to address these issues. Doing this allowed us
to track down bugs much faster.

This was an extremely challenging but rewarding project but overall our team is extremely proud
of the final processor we created and wished we had more time to implement more and more
features into this processor.

70

Appendix

71

A. Appendix

A.1. Single-Cycle RTL
The initial design was a single-cycle RTL which can be seen below. This is provided to demonstrate
the progression of our CPU design and does not necessarily, directly impact our final CPU design.

72

A
.
A
ppendix

Table A.1.: Single-Cycle RTL Part 1
Instruction Format Instruction Name Instruction Name Instruction Name Instruction Name

A add sub pop pop
newPC = PC + 2 newPC = PC + 2 newPC = PC + 2 newPC = PC + 2
PC = newPC PC = newPC PC = newPC PC = newPC

inst = Mem[PC] inst = Mem[PC] inst = Mem[PC] inst = Mem[PC]
a = Reg[CA] a = Reg[CA] a = Reg[CA] b = Reg[inst[8:5]]

b = Reg[inst[8:5]] b = Reg[inst[8:5]] Reg[inst[8:5]] = a Reg[CA] = b
result = a + b result = a - b

Reg[CA] = result Reg[CA] = result
I addi lui slli

newPC = PC + 2 newPC = PC + 2 newPC = PC + 2
PC = newPC PC = newPC PC = newPC

inst = Mem[PC] inst = Mem[PC] inst = Mem[PC]
a = Reg[CA] b = SE(inst[15:5]) a = Reg[CA]

b = SE(inst[15:5]) Reg[CA] = b b = SE(inst[15:5])
result = a + b result = a « b

Reg[CA] = result Reg[CA] = result
M addsp lw sw

newPC = PC + 2 newPC = PC + 2 newPC = PC + 2
PC = newPC PC = newPC PC = newPC

inst = Mem[PC] inst = Mem[PC] inst = Mem[PC]
a = Reg[sp] a = Reg[inst[8:5]] a = Reg[inst[8:5]]

b = SE(inst[15:9]) b = SE(inst[15:9]) b = SE(inst[15:9])
result = a + b offset = a + b offset = a + b

Reg[sp] = result val = Mem[offset] val = Reg[CA]
Reg[CA] = val Reg[offset] = val

73

A
.
A
ppendix

Table A.2.: Single-Cycle RTL Part 2
Instruction Format Instruction Name Instruction Name Instruction Name Instruction Name

B beq bge blt
newPC = PC + 2 newPC = PC + 2 newPC = PC + 2
PC = newPC PC = newPC PC = newPC

inst = Mem[PC] inst = Mem[PC] inst = Mem[PC]
a = Reg[CA] a = Reg[CA] a = Reg[CA]

b = SE(inst[8:5]) b = SE(inst[8:5]) b = SE(inst[8:5])
imm = SE(inst[15:9]) imm = SE(inst[15:9]) imm = SE(inst[15:9])
target = PC + imm target = PC + imm target = PC + imm

if (a == b) ? PC = target if (a >= b) ? PC = target if (a < b) ? PC = target
L and or xor slt

newPC = PC + 2 newPC = PC + 2 newPC = PC + 2 newPC = PC + 2
PC = newPC PC = newPC PC = newPC PC = newPC

inst = Mem[PC] inst = Mem[PC] inst = Mem[PC] inst = Mem[PC]
a = Reg[CA] a = Reg[CA] a = Reg[CA] a = Reg[CA]

b = Reg[inst[8:5]] b = Reg[inst[8:5]] b = Reg[inst[8:5]] b = Reg[inst[8:5]]
result = a & b result = a | b result = 𝑎 ⊕ 𝑏 result = a < b ? 1 : 0

Reg[CA] = result Reg[CA] = result Reg[CA] = result Reg[CA] = result
LI andi ori xori slti

newPC = PC + 2 newPC = PC + 2 newPC = PC + 2 newPC = PC + 2
PC = newPC PC = newPC PC = newPC PC = newPC

inst = Mem[PC] inst = Mem[PC] inst = Mem[PC] inst = Mem[PC]
a = Reg[CA] a = Reg[CA] a = Reg[CA] a = Reg[CA]

b = SE([inst[12:5]) b = SE([inst[12:5]) b = SE([inst[12:5]) b = SE([inst[12:5])
result = a & b result = a | b result = 𝑎 ⊕ 𝑏 result = a < b ? 1 : 0

Reg[CA] = result Reg[CA] = result Reg[CA] = result Reg[CA] = result

74

A
.
A
ppendix

Instruction Format Instruction Name Instruction Name Instruction Name Instruction Name

C swap nop
newPC = PC + 2 newPC = PC + 2
PC = newPC PC = newPC

inst = Mem[PC] inst = Mem[PC]
b = SE([inst[12:5])

CA = b
J jar j

newPC = PC + 2 newPC = PC + 2
PC = newPC PC = newPC

inst = Mem[PC] inst = Mem[PC]
b = SE(inst[15:5]) b = SE(inst[15:5])
result = PC + b result = PC + b
Mem[ra] = PC PC = result
PC = result75

A
.
A
ppendix

76

A
.
A
ppendix

Instruction Format Type Opcode F2 IorD MemRead MemWrite RegWrite RegDest

add A 001 00 0 0 0 1 01
sub A 001 01 0 0 0 1 01

blastOff A 001 10 0 0 0 1 00
blastOn A 001 11 0 0 0 1 01

addi I 010 00 0 0 0 1 01
slli I 010 01 0 0 0 1 01
lui I 010 10 0 0 0 1 01

addsp I 010 11 0 0 0 1 11

lw M 011 00 0/1 1 0 1 01
sw M 011 01 0 0 1 0 X

jar J 100 00 0 0 0 1 10
j J 100 01 0 0 0 0 00
jl J 100 10 0 0 0 0 00
jarl J 100 11 0 0 0 1 10

beq B 101 00 0 0 0 0 X
blt B 101 01 0 0 0 0 X
bge B 101 10 0 0 0 0 X

or L 110 00 0 0 0 1 01
and L 110 01 0 0 0 1 01
xor L 110 10 0 0 0 1 01
slt L 110 11 0 0 0 1 01

ori LI 111 00 0 0 0 1 01
andi LI 111 01 0 0 0 1 01
xori LI 111 10 0 0 0 1 01
slti LI 111 11 0 0 0 1 01

swap C 000 00 0 0 0 0 X
nop C 000 01 0 0 0 0 X

77

A
.
A
ppendix

Instruction GT LT EQ Swap? Branch? SLT? ALUOp (op) ALUSrc1 ALUSrc2 WriteVal

add X X X 0 0 0 0000 add 00 1 001
sub X X X 0 0 0 0001 sub 00 1 001

blastOff X X X 0 0 0 X X X X 000
blastOn X X X 0 0 0 X X X X 011

addi X X X 0 0 0 0000 add 00 0 001
slli X X X 0 0 0 0010 sll 00 0 001
lui X X X 0 0 0 X X X X 101

addsp X X X 0 0 0 0000 add 01 0 001

lw X X X 0 0 0 0000 add 11 0 100
sw X X X 0 0 0 0000 add 11 0 X

jar 1 1 1 0 1 0 0000 add 10 0 010
j 1 1 1 0 1 0 0000 add 10 0 X
jl 1 1 1 0 1 0 0000 add 10 0 X
jarl 1 1 1 0 1 0 0000 add 10 0 010

beq 0 0 1 0 1 0 0000 add 10 0 X
blt 0 1 0 0 1 0 0000 add 10 0 X
bge 1 0 1 0 1 0 0000 add 10 0 X

or X X X 0 0 0 0100 or 00 1 001
and X X X 0 0 0 0011 and 00 1 001
xor X X X 0 0 0 0101 xor 00 1 001
slt 0 1 0 0 0 1 X X X X 001

ori X X X 0 0 0 0100 or 00 0 001
andi X X X 0 0 0 0011 and 00 0 001
xori X X X 0 0 0 0101 xor 00 0 001
slti 0 1 0 0 0 1 X X X X 001

swap X X X 1 0 0 X X X X 101
nop X X X 0 0 0 X X X X X

78

IorD = 0
PCWrite = 1
IRWrite = 1
Swap? = 0|
Branch? = 0

Instruction Fetch

Start

0

Branch? = 0
ALUSrc1 = 000

ALUSrc2 = 1
SLT? = 0

Execution2

(Op = add, sub, and, or, xor)

RegWrite = 1
RegDest = 01
MemWrite = 0
WriteVal = 001

A-Type & L-Type
Completion3

Branch? = 0
SLT? = 1

LT = 1
GT = 0
EQ = 0

Execution4

(Op = slt)

Branch? = 0
ALUSrc1 = 011
ALUSrc2 = 0

SLT? = 0

5 Memory Address
Computation

(O
p = lw

, s
w)

MemWrite = 0
IorD = 1

Memory Access6

(O
p

=
lw

)

RegWrite = 0
MemWrite = 1

IorD = 1

Memory Access8

(O
p = sw

)

Branch? = 0
SLT? = 0

Execution9

Swap? = 0
ALUSrc1 = 010
ALUSrc2 = 0
Branch? = 0

Instruction Decode/
Register Fetch

1

(Op = blastOff, blastOn)

RegWrite = 1
RegDest = 00
MemWrite = 0
WriteVal = 000

blastOff
Completion

10

RegWrite = 1
RegDest = 01
MemWrite = 0
WriteVal = 011

blastOn
Completion

11

(O
p

=
bl

as
tO

ff) (O
p =

blastO
n)

RegWrite = 1
RegDest = 01
WriteVal = 100

lw Completion7

Note: Particular control signals will default to 0 after every state change. These signals are: PCWrite, IRWrite, RegWrite, MemWrite

A
.
A
ppendix

79

IorD = 0
PCWrite = 1
IRWrite = 1
Swap? = 0|
Branch? = 0

Instruction Fetch

Start

0

LT = 0
GT = 0
EQ = 1

PCWrite = 1
Branch? = 1

SLT? = 0

Branch
Completion12

(Op = beq)

LT = 1
GT = 0
EQ = 0

PCWrite = 1
Branch? = 1

SLT? = 0

Branch
Completion13

(Op = blt)

LT = 0
GT = 1
EQ = 1

PCWrite = 1
Branch? = 1

SLT? = 0

14
Branch

Completion

(O
p = bge)

LT = 1
GT = 1
EQ = 1

PCWrite = 1
Branch? = 1

SLT? = 0

J-Type Execution15

Swap? = 0
ALUSrc1 = 010
ALUSrc2 = 0
Branch? = 0

Instruction Decode/
Register Fetch

1

RegWrite = 0
MemWrite = 0

16

RegWrite = 1
RegDest = 10
MemWrite = 0
WriteVal = 010

17

LT = 1
GT = 1
EQ = 1

Branch? = 1
SLT? = 0

ALUSrc1 = 100
ALUSrc2 = 0

J-Type Execution
(Return to ra)

30

J-Type Completion
(Inst Dependent)

(Op = jar, jalr)

(Op = j, jl)

RegWrite = 0
MemWrite = 0
PCWrite = 1

28

RegWrite = 1
RegDest = 10
MemWrite = 0
WriteVal = 010

PCWrite = 1

29

(Op = jalr)(Op = jar)(Op = j) (Op = jl)

A
.
A
ppendix

80

IorD = 0
PCWrite = 1
IRWrite = 1
Swap? = 0|
Branch? = 0

Instruction Fetch

Start

0

ALUSrc1 = 000
ALUSrc2 = 0
Branch? = 0

SLT? = 0

Execution18

(Op = addi, slli, andi, ori, xori)

RegWrite = 1
RegDest = 01
MemWrite = 0
WriteVal = 001

I-Type** & LI-Type
Completion19

Branch? = 0
SLT? = 1

LT = 1
GT = 0
EQ = 0

Execution20

(Op = slti)

ALUSrc1 = 001
ALUSrc2 = 0
Branch? = 0

SLT? = 0

21 Execution

(O
p = a

ddsp
)

RegWrite = 1
RegDest = 11
MemWrite = 0
WriteVal = 001

addsp
Completion

22

Branch? = 0
SLT? = 0

Execution23

Swap? = 0
ALUSrc1 = 010
ALUSrc2 = 0
Branch? = 0

Instruction Decode/
Register Fetch

1

(Op = lui)

RegWrite = 1
RegDest = 01
MemWrite = 0
WriteVal = 101

lui
Completion24

* - ALUOp is determined by the specific instruction in ALU Control. Simplified here for clarify.
** - lui, slti, and addsp are exempt from this state.

A
.
A
ppendix

81

IorD = 0
PCWrite = 1
IRWrite = 1
Swap? = 0|
Branch? = 0

Instruction Fetch

Start

0

Swap? = 0
ALUSrc1 = 010

ALUSrc2 = 0
Branch? = 0

Instruction Decode/
Register Fetch

1

ALUSrc1 = 010
ALUSrc2 = 0
Swap? = 1

Swap Execution27

Branch? = 0
SLT? = 0

nop "Execution"25

RegWrite = 0
MemWrite = 0

nop "Completion"26

(Op = nop)

(Op = swap)

A
.
A
ppendix

82

Accumulator ISA Reference Data
Michael Donaghy, Braedyn Edwards,
Emily Hart, Liam Hill, Logan Manthey
November 15, 2022

1 Base Instructions in alphabetical order

MNEMONIC FMT NAME VERILOG DESCRIPTION
add A Add R[ca] = R[rs1] + R[ca]
addi I Add

Immediate
R[ca] = imm + R[ca]

addsp I Add Stack
Pointer

sp = R[sp] + imm

and L AND R[ca] = R[rs1] & R[ca]
andi LI AND

Immediate
R[ca] = imm & R[ca]

beq B Branch
Equal

if(R[ca] == R[rs1])
PC=PC+imm

bge B Branch
Greater
Than Equal

if(R[ca] R[rs1])
PC=PC+imm

blt B Branch
Less Than

if(R[ca] < R[rs1])
PC=PC+imm

jar J Jump and Re-
turn

PC = Reg[ra] + imm

j J Jump PC = PC + imm + label
jarl J Jump and

Return Imme-
diate

PC = Reg[ra] + imm
Reg[ra] = oldPc

jl J Jump Immedi-
ate

Reg[ra] = PC

PC = PC + imm + label
lui I Load Upper

Immediate
ca = imm[15:08]

lw M Load Word ca = MEM[rs1] + imm(6:0)
nop C No Operation N/A
or L Or ca = ca | R[s1]
ori LI OR with

Immediate
ca = ca | imm

blastOff A Blast Off R[rs1] = ca
blastOn A Blast On ca = R[rs1]
slli I Shift Left

Immediate
ca = ca « imm

slt L Set Less
Than

ca = (R[ca] < R[rs1]) ? 1 : 0

slti LI Set Less Than
Immediate

if(imm< R[rs1])
ca = 1

sub A Subtract ca = ca - R[rs1]
sw M Store Word MEM[rs1] + imm(6:0) = ca
swap C Swap Current

Accumulator
ca = *R[rs1]

xor L XOR ca = R[rs1] ĉa
xori LI XOR

Immediate
ca = R[rs1] îmm

2 Register Name, Use, Calling Convention

REGISTER NAME USE SAVER
x0 zero Zero N.A
x1 sp Stack Pointer Callee
x2 ra Return Address Caller

x3-x6 a0-a3 Accumulators Caller
x7-x8 p0-p1 Function Args/ Return Type Caller
x9-x14 p2-p7 Func Args Caller

x15 ca Current Accum. —

3 Core Instruction Formats

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 [b]
A — rs1 f2 Opcode
I Immediate f2 Opcode
M Immediate rs1 f2 Opcode
J Immediate f2 Opcode
B Immediate rs1 f2 Opcode
L — rs1 f2 Opcode
LI — Immediate f2 Opcode
C – rs1 f2 Opcode

4 Opcodes in Numerical Order By Opcode

MNEMONIC FMT OPCODE FUNCT2
add A 001 00
sub A 001 01
blastOff A 001 10
blastOn A 001 11

addi I 010 00
slli I 010 01
lui I 010 10
addsp I 010 11

lw M 011 00
sw M 011 01

jar J 100 00
j J 100 01
jl J 100 10
jarl J 100 11

beq B 101 00
bge B 101 01
blt B 101 10

or L 110 00
and L 110 01
xor L 110 10
slt L 110 11

ori LI 111 00
andi LI 111 01
oxri LI 111 10
slti LI 111 11

swap C 000 00
nop C 000 01

1

	Introduction
	High Level Summary
	Instruction Set Architecture
	Implementation
	Testing
	Final Results

	Assembly Language Specifications
	High Level Description
	Registers Available
	Instructions
	Syntax and Semantics
	Calling Conventions
	Translating Assembly Language into Machine Language
	Assembly Translations
	RelPrime
	SumArray
	SumArray (Recursive)
	If
	While Loop

	Machine Language Translations
	RelPrime
	SumArray
	SumArray (Recursive)
	If
	While Loop

	Register Transfer Language
	Multi-Cycle RTL
	RTL Verification
	RTL Tests
	Add/Sub/And/Or/Xor Tests
	Memory Reference Tests
	BlastOn Tests
	BlastOff Tests
	Branch Type Tests
	Jump Type Tests
	Addi/Andi/Ori/Xori Tests
	Slt Test
	Slti Test
	Lui Test
	Swap Test
	AddSP Test

	Components

	Component Specifications
	Comparator
	Hardware Implementation Plan
	Unit Tests

	ALU
	Hardware Implementation Plan
	Unit Tests

	Registers
	Hardware Implementation Plan
	Unit Tests

	Register File
	Hardware Implementation Plan
	Unit Tests

	Memory
	IO
	Hardware Implementation Plan
	Unit Tests

	Immediate Generator
	Hardware Implementation Plan
	Unit Tests

	ALU Control
	Hardware Implementation Plan
	Unit Tests

	Multi-Cycle Data Path
	Control Specifications
	Control Signals
	Control Unit Specification
	Control Unit Testing
	ALU Control Unit Specification
	ALU Control Unit Testing

	Testing
	Unit Testing
	Integration Testing
	Subsystem Testing
	System Testing

	Subsystems Specifications
	PC Subsystem
	Memory Subsystem
	Register File Subsystem
	Branch Subsystem
	ALU Subsystem

	Performance
	Machine Code Assembler
	Instructions for Basic Usage
	Assembly Language Tokens and Usage
	Enable/Disable memory locations and comments
	Set Memory Address %
	Add a Label $

	Instruction Syntax
	Labels and Limits
	Pseudo Instructions
	User Error Catching

	Conclusion
	Appendix
	Appendix
	Single-Cycle RTL
	Control Bits
	Control State Diagram
	Reference Data Sheet

